X-ray dark-field imaging using a grating interferometer has shown potential benefits for a variety of applications in recent years.X-ray dark-field image is commonly retrieved by using discrete Fourier transform from ...X-ray dark-field imaging using a grating interferometer has shown potential benefits for a variety of applications in recent years.X-ray dark-field image is commonly retrieved by using discrete Fourier transform from the acquired phasestepping data.The retrieval process assumes a constant phase step size and a constant flux for each stepped grating position.However,stepping errors and flux fluctuations inevitably occur due to external vibrations and/or thermal drift during data acquisition.Previous studies have shown that those influences introduce errors in the acquired phase-stepping data,which cause obvious moiréartifacts in the retrieved refraction image.This work investigates moiréartifacts in x-ray dark-field imaging as a result of flux fluctuations.For the retrieved mean intensity,amplitude,visibility and dark-field images,the dependence of moiréartifacts on flux fluctuation factors is theoretically derived respectively by using a first-order Taylor series expansion.Results of synchrotron radiation experiments verify the validity of the derived analytical formulas.The spatial frequency characteristics of moiréartifacts are analyzed and compared to those induced by phase-stepping errors.It illustrates that moiréartifacts can be estimated by a weighted mean of flux fluctuation factors,with the weighting factors dependent on the moiréphase and different greatly for each retrieved image.Furthermore,moiréartifacts can even be affected by object’s features not displayed in the particular contrast.These results can be used to interpret images correctly,identify sources of moiréartifacts,and develop dedicated algorithms to remove moiréartifacts in the retrieved multi-contrast images.展开更多
Ring artifacts will happen mostly when the detector has inconsistent response among the detector channels,and the characteristic produced rings centered in the iso-center in the reconstructed slices inevitably affect ...Ring artifacts will happen mostly when the detector has inconsistent response among the detector channels,and the characteristic produced rings centered in the iso-center in the reconstructed slices inevitably affect the recognition and analysis of the corresponding sample structures in neutron computed tomography(CT).In this work,a ring correction method based on the projection-field(RCP)is proposed,it is a pre-processing method and provides the corrected projection data directly,which is also conducive to efficient data storage and other algorithmic researches.Simulation and physical experiments are performed for verifying the effect of the method,and one of the correction methods based on the image-field is used for comparison.The results demonstrate that the RCP can correct the ring artifacts well without reducing the image resolution or over-correction.展开更多
JPEG-Compatibility steganalysis detects the presence of secret message embedded in the JPEG decompressed images and estimates the embedding rate. We propose a JPEG-Compatibility steganalysis algorithm that estimates t...JPEG-Compatibility steganalysis detects the presence of secret message embedded in the JPEG decompressed images and estimates the embedding rate. We propose a JPEG-Compatibility steganalysis algorithm that estimates the embedding rate based on the difference between the stego image and its recompression based predicted co-vet image. In particular, compression artifacts and embedding changes are distinguished based on the amplitude of pixel value changes. This is done independent of the embedding positions, thus is effective for both content non-adaptive and content adaptive steganography. In addition, we also improve the recompression prediction scheme to more accurately estimate the JPEG quantization table. Experimental results show that the proposed algorithm is significantly more effective in detecting spatial ±1 steganography across a wide range of quality factors and embedding rates, when compared to the previous works.展开更多
Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing metho...Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing method.There are two parameters in VMD that have a great influence on the result of signal decomposition.Thus,this paper studies a signal decomposition by improving VMD based on squirrel search algorithm(SSA).It’s improved with abilities of global optimal guidance and opposition based learning.The original seasonal monitoring condition in SSA is modified.The feedback of whether the optimal solution is successfully updated is used to establish new seasonal monitoring conditions.Opposition-based learning is introduced to reposition the position of the population in this stage.It is applied to optimize the important parameters of VMD.GOSSA-VMD model is established to remove ocular artifacts from EEG recording.We have verified the effectiveness of our proposal in a public dataset compared with other methods.The proposed method improves the SNR of the dataset from-2.03 to 2.30.展开更多
Elastic reverse time migration(RTM)uses the elastic wave equation to extrapolate multicomponent seismic data to the subsurface and separate the elastic wavefield into P-and S-waves.P-and S-wave separation is a necessa...Elastic reverse time migration(RTM)uses the elastic wave equation to extrapolate multicomponent seismic data to the subsurface and separate the elastic wavefield into P-and S-waves.P-and S-wave separation is a necessary step in elastic RTM to avoid crosstalk between coupled wavefields.However,the current curl-divergence operator-based separation method has a polarity reversal problem in PS imaging,and vector separation methods often have separation artifacts at the interface,which affects the quality of the imaging stack.We propose a non-artifact P-and S-wave separation method based on the first-order velocity-strain equation.This equation is used for wavefield extrapolation and separation in the first-order staggered-grid finite-difference scheme,and the storage and calculation amounts are consistent with the classical first-order velocity-stress equation.The separation equation does not calculate the partial derivatives of the elastic parameters,and thus,there is no artifact in the separated Pand S-waves.During wavefield extrapolation,the dynamic characteristics of the reflected wave undergo some changes,but the transmitted wavefield is accurate;therefore,it does not affect the dynamic characteristics of the final migration imaging.Through numerical examples of 2 D simple models,part SEAM model,BP model,and 3 D 4-layer model,different wavefield separation methods and corresponding elastic RTM imaging results are analyzed.We found that the velocity-strain based elastic RTM can image subsurface structures well,without spike artifacts caused by separation artifacts,and without polarity reversal phenomenon of the PS imaging.展开更多
During the process of magnetic resonance imaging (MRI), the patient motion causes phase errors in collected signals and induces motion artifacts in the reconstructed image. Severe artifacts interfere with the focus ...During the process of magnetic resonance imaging (MRI), the patient motion causes phase errors in collected signals and induces motion artifacts in the reconstructed image. Severe artifacts interfere with the focus location. Because the genetic algorithm (GA) has characteristics of parallel, random and adaptive stochastic searching, a correction method of motion artifacts is presented based on the algorithm. The method can correct the phase error in K-space signals step by step. Experiments show that the motion artifacts in MRI can be effectively suppressed by using the method.展开更多
The open and dynamic environment of Internet computing demands new software reliability technologies.How to efficiently and effectively build highly reliable Internet applications becomes a critical research problem.T...The open and dynamic environment of Internet computing demands new software reliability technologies.How to efficiently and effectively build highly reliable Internet applications becomes a critical research problem.This paper proposes a research framework for predicting reliability of individual software entities as well as the whole Internet application.Characteristics of the Internet environment are comprehensively analyzed and several reliability prediction approaches are proposed.A prototype is implemented and practical use of the proposed framework is also demonstrated.展开更多
Principal side factors as well as technical and procedural peculiarities capable of distorting the results of measurements of adsorbed and desorbed amounts, of falsifying the nature of the processes proceeding in the ...Principal side factors as well as technical and procedural peculiarities capable of distorting the results of measurements of adsorbed and desorbed amounts, of falsifying the nature of the processes proceeding in the systems under study, and of promoting artifacts in calorimetric and other studies of gas chemisorption on powders are considered. Modified techniques and procedures allowing the elimination of sources of side phenomena and artifacts and freeing traditional glass static adsorption apparatuses and experimental procedures from undesirable factors and peculiarities are proposed. Some available chemisorption and calorimetric data representing artifacts and also some data that are not artifacts but, due to imperfections of chemisorption techniques, show up as artifacts are presented and discussed. Several applications of the improved techniques and procedures to calorimetric and adsorption studies of the steps of catalytic processes proceeding on the basis of natural gas and of products of its processing are presented and discussed.展开更多
Objective To describe the pitfalls in positron emission tomography/computed tomography (PET/CT) imaging and classify them according to the principles of their generation. Methods We summarized retrospectively the ^...Objective To describe the pitfalls in positron emission tomography/computed tomography (PET/CT) imaging and classify them according to the principles of their generation. Methods We summarized retrospectively the ^18F-fluorodeoxyglucose (FDP) PET/CT imaging pitfalls through reviewing the PET/CT images of 872 patients. The pitfalls were divided into artifacts and infrequent physiological uptake, and the artifacts were further classified according to their causes. Meanwhile, we calculated the incidences of various pitfalls. Whether the PET/CT pitfalls influenced the diagnostic decision was analyzed. The appearances of pitfalls in PET were also described. Results Pitfalls could be found in PET/CT images of 684(78.4%) patients. Artifacts were found in 664 (76.15%) patients, and could be classified into self-factor artifacts and equipment-or technology-related artifacts. Among self-factor artifacts, respiratory motion (57.5%), postprandial or hyperglycemia artifacts (2.41%), and metal or high density matter artifacts (1.38%) were frequent. As for equipment-or tectmology-related factors, injection point outleakage or radiotracer contamination (13.88%) and truncation artifacts (1.83%) were most common ones. Infrequent physiological FDG uptakes, including fatty up-take, endometrial uptake, and bilateral breast feeding period uptake, were found in 20 (2.29%) patients. Among all pitfalls, the artifacts in 92 (13.4%) patients and infrequent physiological uptakes in 6 (0.88%) patients affected the diagnostic results. Artifact images in PET could be described as hot or cold area and the images of infrequent physiological uptake were always shown as hot area. Conclusions The incidence of pitfall in PET/CT imaging was high and the causes of pitfalls are various. Among all causes that artifacts generated, respiratory motion is the most common. Some pitfalls may disturb clinical physicians' decision, so it is important to recognize artifacts and physiological uptake, and distinguish them from pathological uptakes.展开更多
For cone beam computed tomography(CBCT),there has long been a desire to modulate the intensity and distribution of the X-rays to accommodate the patient’s anatomy as the gantry rotates from one projection to another....For cone beam computed tomography(CBCT),there has long been a desire to modulate the intensity and distribution of the X-rays to accommodate the patient’s anatomy as the gantry rotates from one projection to another.This would reduce both image artifacts and radiation dose.However,the current beam modulation setups,such as dynamic bowtie filters,may be too complex for practical use in clinical applications.This study aimed to investigate a simplified dynamic beam filtration strategy for CBCT imaging to reduce image artifacts and radiation dose.In this study,the beam filtration was designed to vary dynamically as the CBCT gantry rotates around the object.Specifically,two distinct components were integrated:the sheet filter part and the bowtie filter part.The dynamic beam filtration setup has two working schemes,one is a combination of dynamic sheet filter and dynamic bowtie filter,denoted as dynamic filterdynamic bowtie(DFDB);the other is a combination of dynamic sheet filter and static bowtie filter,denoted as dynamic filter-static bowtie(DFSB).Numerical imaging experiments were performed for three human body parts:the shoulder,chest,and knee.In addition,the Monte Carlo simulation platform MC-GPU was used to generate the dose distribution maps.Results showed that the proposed DFDB and DFSB beam filtration schemes can significantly reduce the image artifacts and thus improve the CBCT image quality.Depending on the scanned object,the total radiation dose could be reduced by 30%.The proposed simple dynamic beam filtration strategy,especially the DFSB approach,could be beneficial in the future to improve the CBCT image quality with reduced image artifacts and radiation dose.展开更多
基金the Natural Science Foundation of China(Grant Nos.U1532113,11475170,and 11905041)Fundamental Research Funds for the Central Universities(Grant No.PA2020GDKC0024)Anhui Provincial Natural Science Foundation(Grant No.2208085MA18).
文摘X-ray dark-field imaging using a grating interferometer has shown potential benefits for a variety of applications in recent years.X-ray dark-field image is commonly retrieved by using discrete Fourier transform from the acquired phasestepping data.The retrieval process assumes a constant phase step size and a constant flux for each stepped grating position.However,stepping errors and flux fluctuations inevitably occur due to external vibrations and/or thermal drift during data acquisition.Previous studies have shown that those influences introduce errors in the acquired phase-stepping data,which cause obvious moiréartifacts in the retrieved refraction image.This work investigates moiréartifacts in x-ray dark-field imaging as a result of flux fluctuations.For the retrieved mean intensity,amplitude,visibility and dark-field images,the dependence of moiréartifacts on flux fluctuation factors is theoretically derived respectively by using a first-order Taylor series expansion.Results of synchrotron radiation experiments verify the validity of the derived analytical formulas.The spatial frequency characteristics of moiréartifacts are analyzed and compared to those induced by phase-stepping errors.It illustrates that moiréartifacts can be estimated by a weighted mean of flux fluctuation factors,with the weighting factors dependent on the moiréphase and different greatly for each retrieved image.Furthermore,moiréartifacts can even be affected by object’s features not displayed in the particular contrast.These results can be used to interpret images correctly,identify sources of moiréartifacts,and develop dedicated algorithms to remove moiréartifacts in the retrieved multi-contrast images.
基金the National Key Research and Development Program of China(Grant Nos.2016YFA0401502 and 2017YFB0701903)the National Natural Science Foundation of China(Grant Nos.U1832219 and 12005166)+3 种基金the Youth Innovation Promotion Association,the Chinese Academy of Sciences(CAS)(Grant No.2017023)the Guangdong Natural Science Foundation,China(Grant No.2016A030313129)the Key Research Program of the Institute of Geology&Geophysics,CAS(Grant Nos.IGGCAS-201903 and SZJJ201901)the Key Research Program,CAS(Grant Nos.YJKYYQ20190043,ZDBS-LY-DQC003,XDA14040401,and KFZD-SW-422).
文摘Ring artifacts will happen mostly when the detector has inconsistent response among the detector channels,and the characteristic produced rings centered in the iso-center in the reconstructed slices inevitably affect the recognition and analysis of the corresponding sample structures in neutron computed tomography(CT).In this work,a ring correction method based on the projection-field(RCP)is proposed,it is a pre-processing method and provides the corrected projection data directly,which is also conducive to efficient data storage and other algorithmic researches.Simulation and physical experiments are performed for verifying the effect of the method,and one of the correction methods based on the image-field is used for comparison.The results demonstrate that the RCP can correct the ring artifacts well without reducing the image resolution or over-correction.
基金This work was supported in part by National Natural Science Foundation of China,National 973 Basic Research Program of China,the Fundamental Research Funds for the Central Universities,HUST
文摘JPEG-Compatibility steganalysis detects the presence of secret message embedded in the JPEG decompressed images and estimates the embedding rate. We propose a JPEG-Compatibility steganalysis algorithm that estimates the embedding rate based on the difference between the stego image and its recompression based predicted co-vet image. In particular, compression artifacts and embedding changes are distinguished based on the amplitude of pixel value changes. This is done independent of the embedding positions, thus is effective for both content non-adaptive and content adaptive steganography. In addition, we also improve the recompression prediction scheme to more accurately estimate the JPEG quantization table. Experimental results show that the proposed algorithm is significantly more effective in detecting spatial ±1 steganography across a wide range of quality factors and embedding rates, when compared to the previous works.
基金supported in part by the Science and Technology Major Project of Anhui Province(Grant No.17030901037)in part by the Humanities and Social Science Fund of Ministry of Education of China(Grant No.19YJAZH098)+2 种基金in part by the Program for Synergy Innovation in the Anhui Higher Education Institutions of China(Grant Nos.GXXT-2020-012,GXXT-2021-044)in part by Science and Technology Planning Project of Wuhu City,Anhui Province,China(Grant No.2021jc1-2)part by Research Start-Up Fund for Introducing Talents from Anhui Polytechnic University(Grant No.2021YQQ066).
文摘Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing method.There are two parameters in VMD that have a great influence on the result of signal decomposition.Thus,this paper studies a signal decomposition by improving VMD based on squirrel search algorithm(SSA).It’s improved with abilities of global optimal guidance and opposition based learning.The original seasonal monitoring condition in SSA is modified.The feedback of whether the optimal solution is successfully updated is used to establish new seasonal monitoring conditions.Opposition-based learning is introduced to reposition the position of the population in this stage.It is applied to optimize the important parameters of VMD.GOSSA-VMD model is established to remove ocular artifacts from EEG recording.We have verified the effectiveness of our proposal in a public dataset compared with other methods.The proposed method improves the SNR of the dataset from-2.03 to 2.30.
基金supported by the National Natural Science Foundation of China,Grant No.41774142
文摘Elastic reverse time migration(RTM)uses the elastic wave equation to extrapolate multicomponent seismic data to the subsurface and separate the elastic wavefield into P-and S-waves.P-and S-wave separation is a necessary step in elastic RTM to avoid crosstalk between coupled wavefields.However,the current curl-divergence operator-based separation method has a polarity reversal problem in PS imaging,and vector separation methods often have separation artifacts at the interface,which affects the quality of the imaging stack.We propose a non-artifact P-and S-wave separation method based on the first-order velocity-strain equation.This equation is used for wavefield extrapolation and separation in the first-order staggered-grid finite-difference scheme,and the storage and calculation amounts are consistent with the classical first-order velocity-stress equation.The separation equation does not calculate the partial derivatives of the elastic parameters,and thus,there is no artifact in the separated Pand S-waves.During wavefield extrapolation,the dynamic characteristics of the reflected wave undergo some changes,but the transmitted wavefield is accurate;therefore,it does not affect the dynamic characteristics of the final migration imaging.Through numerical examples of 2 D simple models,part SEAM model,BP model,and 3 D 4-layer model,different wavefield separation methods and corresponding elastic RTM imaging results are analyzed.We found that the velocity-strain based elastic RTM can image subsurface structures well,without spike artifacts caused by separation artifacts,and without polarity reversal phenomenon of the PS imaging.
文摘During the process of magnetic resonance imaging (MRI), the patient motion causes phase errors in collected signals and induces motion artifacts in the reconstructed image. Severe artifacts interfere with the focus location. Because the genetic algorithm (GA) has characteristics of parallel, random and adaptive stochastic searching, a correction method of motion artifacts is presented based on the algorithm. The method can correct the phase error in K-space signals step by step. Experiments show that the motion artifacts in MRI can be effectively suppressed by using the method.
基金supported by the National Natural Science Foundation of China(Project No.61472338,61332010)Guangdong Natural Science Foundation(Project No. 2014A030313151)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Research Grants Council of the Hong Kong Special Administrative Region,China (No.415113)
文摘The open and dynamic environment of Internet computing demands new software reliability technologies.How to efficiently and effectively build highly reliable Internet applications becomes a critical research problem.This paper proposes a research framework for predicting reliability of individual software entities as well as the whole Internet application.Characteristics of the Internet environment are comprehensively analyzed and several reliability prediction approaches are proposed.A prototype is implemented and practical use of the proposed framework is also demonstrated.
文摘Principal side factors as well as technical and procedural peculiarities capable of distorting the results of measurements of adsorbed and desorbed amounts, of falsifying the nature of the processes proceeding in the systems under study, and of promoting artifacts in calorimetric and other studies of gas chemisorption on powders are considered. Modified techniques and procedures allowing the elimination of sources of side phenomena and artifacts and freeing traditional glass static adsorption apparatuses and experimental procedures from undesirable factors and peculiarities are proposed. Some available chemisorption and calorimetric data representing artifacts and also some data that are not artifacts but, due to imperfections of chemisorption techniques, show up as artifacts are presented and discussed. Several applications of the improved techniques and procedures to calorimetric and adsorption studies of the steps of catalytic processes proceeding on the basis of natural gas and of products of its processing are presented and discussed.
文摘Objective To describe the pitfalls in positron emission tomography/computed tomography (PET/CT) imaging and classify them according to the principles of their generation. Methods We summarized retrospectively the ^18F-fluorodeoxyglucose (FDP) PET/CT imaging pitfalls through reviewing the PET/CT images of 872 patients. The pitfalls were divided into artifacts and infrequent physiological uptake, and the artifacts were further classified according to their causes. Meanwhile, we calculated the incidences of various pitfalls. Whether the PET/CT pitfalls influenced the diagnostic decision was analyzed. The appearances of pitfalls in PET were also described. Results Pitfalls could be found in PET/CT images of 684(78.4%) patients. Artifacts were found in 664 (76.15%) patients, and could be classified into self-factor artifacts and equipment-or technology-related artifacts. Among self-factor artifacts, respiratory motion (57.5%), postprandial or hyperglycemia artifacts (2.41%), and metal or high density matter artifacts (1.38%) were frequent. As for equipment-or tectmology-related factors, injection point outleakage or radiotracer contamination (13.88%) and truncation artifacts (1.83%) were most common ones. Infrequent physiological FDG uptakes, including fatty up-take, endometrial uptake, and bilateral breast feeding period uptake, were found in 20 (2.29%) patients. Among all pitfalls, the artifacts in 92 (13.4%) patients and infrequent physiological uptakes in 6 (0.88%) patients affected the diagnostic results. Artifact images in PET could be described as hot or cold area and the images of infrequent physiological uptake were always shown as hot area. Conclusions The incidence of pitfall in PET/CT imaging was high and the causes of pitfalls are various. Among all causes that artifacts generated, respiratory motion is the most common. Some pitfalls may disturb clinical physicians' decision, so it is important to recognize artifacts and physiological uptake, and distinguish them from pathological uptakes.
文摘For cone beam computed tomography(CBCT),there has long been a desire to modulate the intensity and distribution of the X-rays to accommodate the patient’s anatomy as the gantry rotates from one projection to another.This would reduce both image artifacts and radiation dose.However,the current beam modulation setups,such as dynamic bowtie filters,may be too complex for practical use in clinical applications.This study aimed to investigate a simplified dynamic beam filtration strategy for CBCT imaging to reduce image artifacts and radiation dose.In this study,the beam filtration was designed to vary dynamically as the CBCT gantry rotates around the object.Specifically,two distinct components were integrated:the sheet filter part and the bowtie filter part.The dynamic beam filtration setup has two working schemes,one is a combination of dynamic sheet filter and dynamic bowtie filter,denoted as dynamic filterdynamic bowtie(DFDB);the other is a combination of dynamic sheet filter and static bowtie filter,denoted as dynamic filter-static bowtie(DFSB).Numerical imaging experiments were performed for three human body parts:the shoulder,chest,and knee.In addition,the Monte Carlo simulation platform MC-GPU was used to generate the dose distribution maps.Results showed that the proposed DFDB and DFSB beam filtration schemes can significantly reduce the image artifacts and thus improve the CBCT image quality.Depending on the scanned object,the total radiation dose could be reduced by 30%.The proposed simple dynamic beam filtration strategy,especially the DFSB approach,could be beneficial in the future to improve the CBCT image quality with reduced image artifacts and radiation dose.