In this paper, a new algorithm-approximate penalty function method is designed, which can be used to solve a bilevel optimization problem with linear constrained function. In this kind of bilevel optimization problem....In this paper, a new algorithm-approximate penalty function method is designed, which can be used to solve a bilevel optimization problem with linear constrained function. In this kind of bilevel optimization problem. the evaluation of the objective function is very difficult, so that only their approximate values can be obtained. This algorithm is obtained by combining penalty function method and approximation in bilevel programming. The presented algorithm is completely different from existing methods. That convergence for this algorithm is proved.展开更多
This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions an...This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.展开更多
In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step proce...In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step procedure is used to acquire Jacobi elliptic function solutions to these similarity equations, which generate the truncated series solutions to the original perturbed Boussinesq equation. Aside from some singular area, the series solutions are convergent when the perturbation parameter is diminished.展开更多
The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal cohere...The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal coherence, accounting for infinite series reduction solutions to the original equation and general formulas of similarity reduction equations. Painleve Ⅱ type equations, hyperbolic secant and Jacobi elliptic function solutions are obtained for zeroorder similarity reduction equations. Higher order similarity reduction equations are linear variable coefficient ordinary differential equations.展开更多
Based on the boundary layer corrective method, a class of generalized nonlinear perturbed model in the critical case is studied. The asymptotic solution for the original equation is constructed. And the method is of s...Based on the boundary layer corrective method, a class of generalized nonlinear perturbed model in the critical case is studied. The asymptotic solution for the original equation is constructed. And the method is of significance to seek approximate solutions to other nonlinear models.展开更多
In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu...In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].展开更多
An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator...An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.展开更多
In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation ...In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation method (HWAM). To prove the applicabifity of the HWAM, a more general applicability theorem on an approximation method (AM) for an operator equation Ax = y is proved first. As an application, applicability of the HWAM is obtained. Fhrthermore, four steps to use the HWAM are listed and three numerical examples are given in order to illustrate the effectiveness of the method.展开更多
The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the p...The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the present work, an effective method to calculate the EIE cross sections of an atom/ion in the whole energy region is presented. We use the EIE cross sections of helium as an illustration example. The optical forbidden 1^(1)S–n^(1)S(n = 2–4) and optical allowed 1^(1)S–n^(1)P(n = 2–4) excitation cross sections are calculated in the whole energy region using the scheme that combines the partial wave R-matrix method and the first Born approximation. The calculated cross sections are in good agreement with the available experimental measurements. Based on these accurate cross sections of our calculation, we find that the ratios between the accurate cross sections and Born cross sections are nearly the same for different excitation final states in the same channel. According to this interesting property, a universal correction function is proposed and given to calculate the accurate EIE cross sections with the same computational efforts of the widely used Born cross sections,which should be very useful in the related application fields. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00142.展开更多
This paper studies a generalized nonlinear evolution equation. Using the homotopic mapping method, it constructs a corresponding homotopic mapping transform. Selecting a suitable initial approximation and using homoto...This paper studies a generalized nonlinear evolution equation. Using the homotopic mapping method, it constructs a corresponding homotopic mapping transform. Selecting a suitable initial approximation and using homotopic mapping, it obtains an approximate solution with an arbitrary degree of accuracy for the solitary wave. From the approximate solution obtained by using the homotopic mapping method, it possesses a good accuracy.展开更多
In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite differ...In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme.展开更多
This paper is concerned with the stability of the rarefaction wave for the Burgers equationwhere 0 ≤ a < 1/4p (q is determined by (2.2)). Roughly speaking, under the assumption that u_ < u+, the authors prove t...This paper is concerned with the stability of the rarefaction wave for the Burgers equationwhere 0 ≤ a < 1/4p (q is determined by (2.2)). Roughly speaking, under the assumption that u_ < u+, the authors prove the existence of the global smooth solution to the Cauchy problem (I), also find the solution u(x, t) to the Cauchy problem (I) satisfying sup |u(x, t) -uR(x/t)| → 0 as t → ∞, where uR(x/t) is the rarefaction wave of the non-viscous Burgersequation ut + f(u)x = 0 with Riemann initial data u(x, 0) =展开更多
Due to the zero dispersion point at 1.3μm in optical fibres, 1.3-μm InGaAsP/InP laser diodes have become main light sources in fibre communication systems recently. Influences of quantum noises on direct-modulated p...Due to the zero dispersion point at 1.3μm in optical fibres, 1.3-μm InGaAsP/InP laser diodes have become main light sources in fibre communication systems recently. Influences of quantum noises on direct-modulated properties of single-mode 1.3-μm InGaAsP/InP laser diodes are investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the direct-modulated single-mode laser system are calculated using the linear approximation method. We find that the stochastic resonance (SR) always appears in the dependence of the SNR on the bias current density, and is strongly affected by the cross-correlation coefficient between the carrier and photon noises, the frequency of modulation signal, and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated InGaAsP/InP laser diodes and improve the quality of optical fibre communication systems.展开更多
Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal mod...Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal modulation. By using a linear approximation method, we find that the SR appears during the variation of signal-to-noise ratio (SNR) separately with the pump noise self-correlation time τ, the noise correlation coefficient between the real part and the imaginary part of the quantum noise λq, the attenuation coefficient γ' and the deterministic steady-state intensity I0. In addition, it is found that the SR can be characterized not only by the dependence of SNR on the noise variables of and λq, but also by the dependence of SNR on the laser system variables of γ and I0. Thus our investigation extends the characteristic quantity of SR proposed before.展开更多
This paper is devoted to the study of approximation of the solution for the differential equation whose coefficients are almost period functions. To this end the authors establish the estimation of the solution of gen...This paper is devoted to the study of approximation of the solution for the differential equation whose coefficients are almost period functions. To this end the authors establish the estimation of the solution of general linear differential equation for infinite interval case. For finite interval case, this equation was investigated by G. Tamarkin([1]) applying the Picard method of successive approximation.展开更多
The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric Poeschl-Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary ...The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric Poeschl-Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary spin-orbit quantum number κ using an approximation scheme to substitute the centrifugal terms κ(κ± i 1)r^-2. In view of spin and pseudo-spin (p-spin) symmetries, the relativistic energy eigenvalues and the corresponding two-component wave functions of a particle moving in the field of attractive and repulsive tPT potentials are obtained using the asymptotic iteration method (AIM). We present numerical results in the absence and presence of tensor coupling A and for various values of spin and p-spin constants and quantum numbers n and κ. The non-relativistic limit is also obtained.展开更多
文摘In this paper, a new algorithm-approximate penalty function method is designed, which can be used to solve a bilevel optimization problem with linear constrained function. In this kind of bilevel optimization problem. the evaluation of the objective function is very difficult, so that only their approximate values can be obtained. This algorithm is obtained by combining penalty function method and approximation in bilevel programming. The presented algorithm is completely different from existing methods. That convergence for this algorithm is proved.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.10735030,10475055,10675065 and 90503006)the National Basic Research Program of China(Grant No.2007CB814800)
文摘This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.
基金Project supported by the National Natural Science Foundation of China(Grant No.11505094)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20150984)
文摘In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step procedure is used to acquire Jacobi elliptic function solutions to these similarity equations, which generate the truncated series solutions to the original perturbed Boussinesq equation. Aside from some singular area, the series solutions are convergent when the perturbation parameter is diminished.
基金supported by the National Natural Science Foundations of China (Grant Nos 10735030,10475055,10675065 and 90503006)National Basic Research Program of China (Grant No 2007CB814800)+2 种基金PCSIRT (Grant No IRT0734)the Research Fund of Postdoctoral of China (Grant No 20070410727)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070248120)
文摘The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal coherence, accounting for infinite series reduction solutions to the original equation and general formulas of similarity reduction equations. Painleve Ⅱ type equations, hyperbolic secant and Jacobi elliptic function solutions are obtained for zeroorder similarity reduction equations. Higher order similarity reduction equations are linear variable coefficient ordinary differential equations.
基金Supported by the National Science Foundation of China(11071075)
文摘Based on the boundary layer corrective method, a class of generalized nonlinear perturbed model in the critical case is studied. The asymptotic solution for the original equation is constructed. And the method is of significance to seek approximate solutions to other nonlinear models.
基金supported by Scientific Research Fund of Sichuan Provincial Education Department (09ZB102)Scientific Research Fund of Science and Technology Deportment of Sichuan Provincial (2011JYZ011)
文摘In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172093 and 11372102)the Hunan Provincial Innovation Foundation for Postgraduate,China(Grant No.CX2012B159)
文摘An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.
基金support by the NSFC(11371012,11401359,11471200)the FRF for the Central Universities(GK201301007)the NSRP of Shaanxi Province(2014JQ1010)
文摘In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation method (HWAM). To prove the applicabifity of the HWAM, a more general applicability theorem on an approximation method (AM) for an operator equation Ax = y is proved first. As an application, applicability of the HWAM is obtained. Fhrthermore, four steps to use the HWAM are listed and three numerical examples are given in order to illustrate the effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12241410)。
文摘The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the present work, an effective method to calculate the EIE cross sections of an atom/ion in the whole energy region is presented. We use the EIE cross sections of helium as an illustration example. The optical forbidden 1^(1)S–n^(1)S(n = 2–4) and optical allowed 1^(1)S–n^(1)P(n = 2–4) excitation cross sections are calculated in the whole energy region using the scheme that combines the partial wave R-matrix method and the first Born approximation. The calculated cross sections are in good agreement with the available experimental measurements. Based on these accurate cross sections of our calculation, we find that the ratios between the accurate cross sections and Born cross sections are nearly the same for different excitation final states in the same channel. According to this interesting property, a universal correction function is proposed and given to calculate the accurate EIE cross sections with the same computational efforts of the widely used Born cross sections,which should be very useful in the related application fields. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00142.
基金supported by the National Natural Science Foundation of China(Grant Nos 40676016 and 40876010)the Knowledge Innovation Project of Chinese Academy of Sciences(Grant No KZCX2-YW-Q03-08)+1 种基金LASG State Key Laboratory Special fundE-Institutes of Shanghai Municipal Education Commission of China(Grant No E03004)
文摘This paper studies a generalized nonlinear evolution equation. Using the homotopic mapping method, it constructs a corresponding homotopic mapping transform. Selecting a suitable initial approximation and using homotopic mapping, it obtains an approximate solution with an arbitrary degree of accuracy for the solitary wave. From the approximate solution obtained by using the homotopic mapping method, it possesses a good accuracy.
文摘In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme.
文摘This paper is concerned with the stability of the rarefaction wave for the Burgers equationwhere 0 ≤ a < 1/4p (q is determined by (2.2)). Roughly speaking, under the assumption that u_ < u+, the authors prove the existence of the global smooth solution to the Cauchy problem (I), also find the solution u(x, t) to the Cauchy problem (I) satisfying sup |u(x, t) -uR(x/t)| → 0 as t → ∞, where uR(x/t) is the rarefaction wave of the non-viscous Burgersequation ut + f(u)x = 0 with Riemann initial data u(x, 0) =
基金Project supported by the National Natural Science Foundation of China (Grant No 10275025).
文摘Due to the zero dispersion point at 1.3μm in optical fibres, 1.3-μm InGaAsP/InP laser diodes have become main light sources in fibre communication systems recently. Influences of quantum noises on direct-modulated properties of single-mode 1.3-μm InGaAsP/InP laser diodes are investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the direct-modulated single-mode laser system are calculated using the linear approximation method. We find that the stochastic resonance (SR) always appears in the dependence of the SNR on the bias current density, and is strongly affected by the cross-correlation coefficient between the carrier and photon noises, the frequency of modulation signal, and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated InGaAsP/InP laser diodes and improve the quality of optical fibre communication systems.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275025).
文摘Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal modulation. By using a linear approximation method, we find that the SR appears during the variation of signal-to-noise ratio (SNR) separately with the pump noise self-correlation time τ, the noise correlation coefficient between the real part and the imaginary part of the quantum noise λq, the attenuation coefficient γ' and the deterministic steady-state intensity I0. In addition, it is found that the SR can be characterized not only by the dependence of SNR on the noise variables of and λq, but also by the dependence of SNR on the laser system variables of γ and I0. Thus our investigation extends the characteristic quantity of SR proposed before.
文摘This paper is devoted to the study of approximation of the solution for the differential equation whose coefficients are almost period functions. To this end the authors establish the estimation of the solution of general linear differential equation for infinite interval case. For finite interval case, this equation was investigated by G. Tamarkin([1]) applying the Picard method of successive approximation.
文摘The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric Poeschl-Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary spin-orbit quantum number κ using an approximation scheme to substitute the centrifugal terms κ(κ± i 1)r^-2. In view of spin and pseudo-spin (p-spin) symmetries, the relativistic energy eigenvalues and the corresponding two-component wave functions of a particle moving in the field of attractive and repulsive tPT potentials are obtained using the asymptotic iteration method (AIM). We present numerical results in the absence and presence of tensor coupling A and for various values of spin and p-spin constants and quantum numbers n and κ. The non-relativistic limit is also obtained.