Flaxseed proteins and antioxidant peptides(AP)encrypted in their sequences were analysed in silico with a range of bioinformatics tools to study their physicochemical properties,allergenicity,and toxicity.Nine proteas...Flaxseed proteins and antioxidant peptides(AP)encrypted in their sequences were analysed in silico with a range of bioinformatics tools to study their physicochemical properties,allergenicity,and toxicity.Nine proteases(digestive,plant and microbial sources)were assessed for their ability to release known APs from 23 mature flaxseed storage proteins using the BIOPEP database.The families of proteins identified were predominantly globulins,oleosins,and small amount of conlinin.Overall,253 APs were identified from these proteins.More peptides were released by enzymatic hydrolysis from the globulins than those from oleosins and conlinin.Compared with other enzymes studied,the plant proteases(papain,ficin,and bromelain)were found to be superior to releasing APs from the flaxseed proteins.Analysis of toxicity by ToxinPred showed that none of the peptides released was toxic.Most of the APs showed structural features that are important for antioxidation,including relatively low molecular weight(dipeptides and tripeptides only);amphipathic properties(hydrophobicity range of-0.5 to+0.5);relatively low Boman index(≤2);broad range of pI(3.7-10.8),and an abundance of antioxidant amino acid residues(e.g.glutamic acid and histidine).This study demonstrate the suitability of flaxseed proteins as a source of APs.展开更多
Enzymatic hydrolysis of proteins is a breakdown process of peptide bond in proteins,releasing some peptides with potential biological functions.Previous studies on enzymatic hydrolysis of whey proteins have not identi...Enzymatic hydrolysis of proteins is a breakdown process of peptide bond in proteins,releasing some peptides with potential biological functions.Previous studies on enzymatic hydrolysis of whey proteins have not identified the complete peptide profiles after hydrolysis.In this study,we reconstructed a profile of peptides from whey hydrolysates with two enzymes and different processing conditions.We also developed an ensemble machine learning predictor to classify peptides obtained from whey hydrolysis.A total of 2572 peptides were identified over three process conditions with two enzymes in duplicate.499 peptides were classified and chosen as potential antioxidant peptides from whey proteins.The peptides classified as antioxidants in the hydrolysates had a proportion of 13.1%-24.5%regarding all peptides identified.These results facilitate the selection of promising peptides involved in the antioxidant properties during the enzymatic hydrolysis of whey proteins,aiding the discovery of novel antioxidant peptides.展开更多
Enzymatic hydrolysis,isolation,and purification might make a great deal of difference in antioxidant activity and antigenicity of peptide components.This study aimed to isolate and purify antioxidant peptide component...Enzymatic hydrolysis,isolation,and purification might make a great deal of difference in antioxidant activity and antigenicity of peptide components.This study aimed to isolate and purify antioxidant peptide components from Antarctic krill and evaluate their allergenicity of them.Electron paramagnetic resonance(EPR)spectroscopy results indicated 3-10 kDa Antarctic krill hydrolysates(AKHs)had higher DPPH and·OH radical scavenging rates.And the second component(N2-2)purified 3-10 kDa hydrolysate showed better ability to scavenge DPPH and·OH radicals(P<0.05),which were(47.43±2.18)%and(34.33±1.25)%,respectively.Additionally,indirect-ELISA results revealed that N2-1 had a weaker ability to bind specific IgE and that N2-2 had a lower binding capability to specific IgG1(P<0.05).And N2-2 had a higher EC50 value of(5.29±0.95)ng/mL(P<0.05)in cell degranulation assay,which was about 13.80 times that of Antarctic krill.Therefore,N2-2 might be the potential source of the antioxidant peptides with lower allergenicity.展开更多
Antioxidant peptides have been widely reported.However,only a few reports have been published examining the antioxidant peptides derived from Chinese baijiu.In this study,6 novel peptides derived from Chinese baijiu w...Antioxidant peptides have been widely reported.However,only a few reports have been published examining the antioxidant peptides derived from Chinese baijiu.In this study,6 novel peptides derived from Chinese baijiu were identified successfully using high-performance liquid chromatography-quadrupoletime-of-flight mass spectrometry(HPLC-QTOF-MS)with a concentration of 0.835–24.540μg/L.The underlying molecular mechanisms were investigated,and their cytoprotective effects were examined against 2,2’-azobis(2-methylpropanimidamidine)dihydrochloride(AAPH)-induced oxidative stress in Hep G2 cells.The results showed that these peptides exerted protective effects by suppressing reactive oxygen species(ROS)generation,preventing malondialdehyde(MDA)formation,and upregulating cellular antioxidant enzyme activities(SOD,CAT,and GSH-Px)in a dose-dependent manner.Further experiments proved that these peptides exerted antioxidant effects via Nrf2/ARE-mediated signaling pathway by promoting Nrf2 nuclear translocation,inhibiting ubiquitination,and enhancing transcription capacity of Nrf2 in Hep G2 cells.These findings provide the molecular basis for the effects of antioxidant peptides derived from Chinese baijiu,which is important for a deeper understanding of the relationship between human health and moderate drinking.展开更多
Reactive oxygen species(ROS)-induced oxidative damage is strongly associated with the pathogenesis of chronic diseases,and natural antioxidant peptides have good abilities of scavenging ROS.The antioxidant activity of...Reactive oxygen species(ROS)-induced oxidative damage is strongly associated with the pathogenesis of chronic diseases,and natural antioxidant peptides have good abilities of scavenging ROS.The antioxidant activity of peptide Lys-Ser-Pro-Leu-Tyr(KSPLY)derived from Hericium erinaceus remains unclear.In the present study,the antioxidant effect and mechanism of KSPLY on H_(2)O_(2)-induced oxidative damage in HepG2 cells were investigated.The results indicated that KSPLY exhibited the antioxidant capacity in H_(2)O_(2)-induced HepG2 cells by enhancing superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT)activities.In comparison with the H_(2)O_(2)-treated damage group,the apoptosis rate,ROS level,and malondialdehyde(MDA)content of HepG2 cells treated with KSPLY were significantly decreased.The H.erinaceus-derived peptide KSPLY pretreatment promoted the expression of detoxification and antioxidant enzymes via the Keap1/Nrf2 signal pathway,thereby inhibiting the generation of ROS and MDA.In conclusion,the H.erinaceus-derived peptide KSPLY effectively protected HepG2 cells against H_(2)O_(2)-induced oxidative damage,and it provided a theoretical basis for the further development of new natural antioxidants.展开更多
文摘Flaxseed proteins and antioxidant peptides(AP)encrypted in their sequences were analysed in silico with a range of bioinformatics tools to study their physicochemical properties,allergenicity,and toxicity.Nine proteases(digestive,plant and microbial sources)were assessed for their ability to release known APs from 23 mature flaxseed storage proteins using the BIOPEP database.The families of proteins identified were predominantly globulins,oleosins,and small amount of conlinin.Overall,253 APs were identified from these proteins.More peptides were released by enzymatic hydrolysis from the globulins than those from oleosins and conlinin.Compared with other enzymes studied,the plant proteases(papain,ficin,and bromelain)were found to be superior to releasing APs from the flaxseed proteins.Analysis of toxicity by ToxinPred showed that none of the peptides released was toxic.Most of the APs showed structural features that are important for antioxidation,including relatively low molecular weight(dipeptides and tripeptides only);amphipathic properties(hydrophobicity range of-0.5 to+0.5);relatively low Boman index(≤2);broad range of pI(3.7-10.8),and an abundance of antioxidant amino acid residues(e.g.glutamic acid and histidine).This study demonstrate the suitability of flaxseed proteins as a source of APs.
基金supported and funded by the Gobernación del Cesar-Ministry of Science,Technology,and Innovation through resources for the higher education(grant 736/2015)the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘Enzymatic hydrolysis of proteins is a breakdown process of peptide bond in proteins,releasing some peptides with potential biological functions.Previous studies on enzymatic hydrolysis of whey proteins have not identified the complete peptide profiles after hydrolysis.In this study,we reconstructed a profile of peptides from whey hydrolysates with two enzymes and different processing conditions.We also developed an ensemble machine learning predictor to classify peptides obtained from whey hydrolysis.A total of 2572 peptides were identified over three process conditions with two enzymes in duplicate.499 peptides were classified and chosen as potential antioxidant peptides from whey proteins.The peptides classified as antioxidants in the hydrolysates had a proportion of 13.1%-24.5%regarding all peptides identified.These results facilitate the selection of promising peptides involved in the antioxidant properties during the enzymatic hydrolysis of whey proteins,aiding the discovery of novel antioxidant peptides.
基金the financial support provided by the National Natural Science Foundation of China(32022067)。
文摘Enzymatic hydrolysis,isolation,and purification might make a great deal of difference in antioxidant activity and antigenicity of peptide components.This study aimed to isolate and purify antioxidant peptide components from Antarctic krill and evaluate their allergenicity of them.Electron paramagnetic resonance(EPR)spectroscopy results indicated 3-10 kDa Antarctic krill hydrolysates(AKHs)had higher DPPH and·OH radical scavenging rates.And the second component(N2-2)purified 3-10 kDa hydrolysate showed better ability to scavenge DPPH and·OH radicals(P<0.05),which were(47.43±2.18)%and(34.33±1.25)%,respectively.Additionally,indirect-ELISA results revealed that N2-1 had a weaker ability to bind specific IgE and that N2-2 had a lower binding capability to specific IgG1(P<0.05).And N2-2 had a higher EC50 value of(5.29±0.95)ng/mL(P<0.05)in cell degranulation assay,which was about 13.80 times that of Antarctic krill.Therefore,N2-2 might be the potential source of the antioxidant peptides with lower allergenicity.
基金supported by National Key Research&Development Program of China(2017YFC1600401-3)National Natural Science Foundation of China(31871749 and 31701567)。
文摘Antioxidant peptides have been widely reported.However,only a few reports have been published examining the antioxidant peptides derived from Chinese baijiu.In this study,6 novel peptides derived from Chinese baijiu were identified successfully using high-performance liquid chromatography-quadrupoletime-of-flight mass spectrometry(HPLC-QTOF-MS)with a concentration of 0.835–24.540μg/L.The underlying molecular mechanisms were investigated,and their cytoprotective effects were examined against 2,2’-azobis(2-methylpropanimidamidine)dihydrochloride(AAPH)-induced oxidative stress in Hep G2 cells.The results showed that these peptides exerted protective effects by suppressing reactive oxygen species(ROS)generation,preventing malondialdehyde(MDA)formation,and upregulating cellular antioxidant enzyme activities(SOD,CAT,and GSH-Px)in a dose-dependent manner.Further experiments proved that these peptides exerted antioxidant effects via Nrf2/ARE-mediated signaling pathway by promoting Nrf2 nuclear translocation,inhibiting ubiquitination,and enhancing transcription capacity of Nrf2 in Hep G2 cells.These findings provide the molecular basis for the effects of antioxidant peptides derived from Chinese baijiu,which is important for a deeper understanding of the relationship between human health and moderate drinking.
基金supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(20KJB550016)the National Natural Science Foundation of China(32101944)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Reactive oxygen species(ROS)-induced oxidative damage is strongly associated with the pathogenesis of chronic diseases,and natural antioxidant peptides have good abilities of scavenging ROS.The antioxidant activity of peptide Lys-Ser-Pro-Leu-Tyr(KSPLY)derived from Hericium erinaceus remains unclear.In the present study,the antioxidant effect and mechanism of KSPLY on H_(2)O_(2)-induced oxidative damage in HepG2 cells were investigated.The results indicated that KSPLY exhibited the antioxidant capacity in H_(2)O_(2)-induced HepG2 cells by enhancing superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT)activities.In comparison with the H_(2)O_(2)-treated damage group,the apoptosis rate,ROS level,and malondialdehyde(MDA)content of HepG2 cells treated with KSPLY were significantly decreased.The H.erinaceus-derived peptide KSPLY pretreatment promoted the expression of detoxification and antioxidant enzymes via the Keap1/Nrf2 signal pathway,thereby inhibiting the generation of ROS and MDA.In conclusion,the H.erinaceus-derived peptide KSPLY effectively protected HepG2 cells against H_(2)O_(2)-induced oxidative damage,and it provided a theoretical basis for the further development of new natural antioxidants.