期刊文献+
共找到1,278篇文章
< 1 2 64 >
每页显示 20 50 100
Improved ant colony optimization algorithm for the traveling salesman problems 被引量:22
1
作者 Rongwei Gan Qingshun Guo +1 位作者 Huiyou Chang Yang Yi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期329-333,共5页
Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is amo... Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness. 展开更多
关键词 ant colony optimization heuristic algorithm scout ants path evaluation model traveling salesman problem.
在线阅读 下载PDF
Ant colony optimization algorithm and its application to Neuro-Fuzzy controller design 被引量:11
2
作者 Zhao Baojiang Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期603-610,共8页
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and s... An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully. 展开更多
关键词 neuro-fuzzy controller ant colony algorithm function optimization genetic algorithm inverted pen-dulum system.
在线阅读 下载PDF
Efficiency improvement of ant colony optimization in solving the moderate LTSP 被引量:1
3
作者 Munan Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1301-1309,共9页
In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and sa... In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and satisfactory efficiency. However, when the scale of the TSP increases, ACO, a heuristic algorithm, is greatly challenged with respect to accuracy and efficiency. A novel pheromone-trail updating strategy that moderately reduces the iteration time required in real optimization problem-solving is proposed. In comparison with the traditional strategy of the ACO in several experiments, the proposed strategy shows advantages in performance. Therefore, this strategy of pheromone-trail updating is proposed as a valuable approach that reduces the time-complexity and increases its efficiency with less iteration time in real optimization applications. Moreover, this strategy is especially applicable in solving the moderate large-scale TSPs based on ACO. 展开更多
关键词 ant colony optimization (ACO) travelling salesmanproblem (TSP) time-complexity of algorithm pheromone-trail up-dating.
在线阅读 下载PDF
Weapon target assignment problem satisfying expected damage probabilities based on ant colony algorithm 被引量:26
4
作者 Wang Yanxia Qian Longjun Guo Zhi Ma Lifeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期939-944,共6页
A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the we... A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example. 展开更多
关键词 weapon target assignment ant colony algorithm optimization.
在线阅读 下载PDF
Solving algorithm for TA optimization model based on ACO-SA 被引量:4
5
作者 Jun Wang Xiaoguang Gao Yongwen Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期628-639,共12页
An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missi... An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat. 展开更多
关键词 target assignment (TA) optimization ant colony optimization (ACO) algorithm simulated annealing (SA) algorithm hybrid optimization strategy.
在线阅读 下载PDF
Bayesian-based ant colony optimization algorithm for edge detection
6
作者 YU Yongbin ZHONG Yuanjingyang +6 位作者 FENG Xiao WANG Xiangxiang FAVOUR Ekong ZHOU Chen CHENG Man WANG Hao WANG Jingya 《Journal of Systems Engineering and Electronics》 2025年第4期892-902,共11页
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t... Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task. 展开更多
关键词 ant colony optimization(ACO) Bayesian algorithm edge detection transfer function.
在线阅读 下载PDF
Research of Rural Power Network Reactive Power Optimization Based on Improved ACOA
7
作者 YU Qian ZHAO Yulin WANG Xintao 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第3期48-52,共5页
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud... In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable. 展开更多
关键词 rural power network reactive power optimization ant colony optimization algorithm local search strategy pheromone mutation and re-initialization strategy
在线阅读 下载PDF
双机器人的任务分配和协同作业算法研究
8
作者 李铁军 赵博言 +2 位作者 刘今越 贾晓辉 唐春瑞 《控制工程》 北大核心 2025年第4期577-585,共9页
针对双机器人难以实现合理的任务分配和协同作业的问题,提出了一种基于工作量平衡机制与主从协同蚁群优化算法完成双机器人的任务分配和协同作业的方法。首先,基于任务点集合建立不平衡任务指派模型,任务分配阶段通过迭代路径规划算法... 针对双机器人难以实现合理的任务分配和协同作业的问题,提出了一种基于工作量平衡机制与主从协同蚁群优化算法完成双机器人的任务分配和协同作业的方法。首先,基于任务点集合建立不平衡任务指派模型,任务分配阶段通过迭代路径规划算法平衡两机器人的工作量。然后,通过主从协同蚁群优化算法解算机器人之间避免干涉且保持工作量最小的多目标协同作业优化模型。最后,结合钢筋绑扎场景展开实验,实验结果表明,所提方法可以在两机器人之间实现合理的任务分配,减少二者的工作差异量,使其高效地完成钢筋绑扎作业,并且可以有效避免机器人在作业过程中发生干涉。 展开更多
关键词 双机器人 任务分配 主从协同 蚁群优化算法
在线阅读 下载PDF
基于ARIMA与GGACO算法的ETL任务调度机制研究
9
作者 周金治 刘艺涵 吴斌 《控制工程》 北大核心 2025年第2期208-215,共8页
随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任... 随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任务调度机制的弹性调度能力以及执行效率,提出了一种基于整合移动平均自回归(autoregressive integrated moving average,ARIMA)模型与贪心-遗传-蚁群优化(greedy-genetic-ant colony optimization,GGACO)算法的ETL任务调度机制。初期,建立ARIMA模型并弹性地结合贪心算法计算初始解;中期,利用遗传算法的全局快收敛的特性结合初始解圈定最优解的大致范围;最后,利用蚁群优化算法的局部快速收敛性进行最优解搜索。实验结果表明:该调度机制能够弹性地指导任务调度尽可能地找到最优解,减少任务的执行时间,以及尽可能实现更高效的负载均衡。 展开更多
关键词 弹性调度 ARIMA 贪心算法 遗传算法 蚁群优化算法
在线阅读 下载PDF
考虑飞机除冰任务的除冰车路径规划模型研究
10
作者 徐一旻 王台玉冰 +2 位作者 吕伟 刘鸣秋 吴佳莉 《中国安全生产科学技术》 北大核心 2025年第8期181-188,共8页
为应对冻雨天气下机场除冰作业中车辆调度效率低、动态避障能力不足及多约束条件耦合优化困难等问题,提出1种基于混合蚁群算法的机场除冰车辆路径规划与动态调度优化模型。首先通过栅格化建模技术,将机场CAD地图转化为离散网格空间,综... 为应对冻雨天气下机场除冰作业中车辆调度效率低、动态避障能力不足及多约束条件耦合优化困难等问题,提出1种基于混合蚁群算法的机场除冰车辆路径规划与动态调度优化模型。首先通过栅格化建模技术,将机场CAD地图转化为离散网格空间,综合考虑障碍物动态分布、航班起飞优先级、除冰液有效时间窗、车辆容量限制等约束,构建多目标优化函数。其次,基于混合蚁群算法的全局寻优能力与A^(*)算法的局部路径优化特性,实现复杂环境下路径规划与避障的协同控制。实验基于真实机场脱敏地图构建仿真场景,划分20个区域并标注所有停机位坐标,验证了模型的有效性和鲁棒性。研究结果表明:该模型在确保航班时刻表约束的前提下,总行驶距离减少68%,航班延误时间减少90%,有效规避障碍物膨胀区边界的同时能动态调整多车辆协作路径。研究结果可为冻雨天气下机场除冰作业提供兼顾全局最优性与动态适应性的解决方案。 展开更多
关键词 路径规划 机场除冰车辆 动态调度 混合蚁群算法 多目标优化
在线阅读 下载PDF
基于改进蚁群算法与冰霜-势场法的AGV路径规划
11
作者 李学艺 莫凡 +2 位作者 葛淑磊 吴宗坤 杨通 《组合机床与自动化加工技术》 北大核心 2025年第7期66-72,共7页
针对生产车间中自动导引车(automated guided vehicle,AGV)在路径规划时难以兼顾全局最优与局部最优的问题,提出了一种基于改进蚁群算法和冰霜-势场法的路径规划方法。改进后的蚁群算法可以高效地规划AGV运行的全局路径;提出的冰霜-势... 针对生产车间中自动导引车(automated guided vehicle,AGV)在路径规划时难以兼顾全局最优与局部最优的问题,提出了一种基于改进蚁群算法和冰霜-势场法的路径规划方法。改进后的蚁群算法可以高效地规划AGV运行的全局路径;提出的冰霜-势场法可以使AGV在避让障碍物的同时缩短局部路径的长度。仿真实验证明,相较于传统蚁群算法及其变体,改进的蚁群算法规划的路径长度短5.71%且收敛速度更快;以轴加工车间为例通过仿真表明,相较于D*算法与传统人工势场法,所提出的路径规划方法兼顾路径的全局最优与局部最优,且路径长度缩短6.3%以上。 展开更多
关键词 路径规划 AGV 蚁群算法 冰霜优化
在线阅读 下载PDF
基于阻塞栅格地图的煤矿救援机器人路径规划
12
作者 邵小强 刘明乾 +3 位作者 马博 李浩 吕植越 韩泽辉 《煤炭科学技术》 北大核心 2025年第7期249-261,共13页
针对矿难发生后,煤矿救援机器人面对井下复杂环境使用路径规划算法耗时太长,路径规划过程中产生冗余点过多且易陷入死锁的问题,提出一种基于类型匹配的栅格地图阻塞算法,该算法可通过迭代阻塞以减少栅格地图中无需探索的可通行节点数量... 针对矿难发生后,煤矿救援机器人面对井下复杂环境使用路径规划算法耗时太长,路径规划过程中产生冗余点过多且易陷入死锁的问题,提出一种基于类型匹配的栅格地图阻塞算法,该算法可通过迭代阻塞以减少栅格地图中无需探索的可通行节点数量。算法的阻塞过程利用定义的栅格节点和其邻节点构成的3×3子图类型与栅格地图进行匹配。首先根据路径规划算法的寻路特点定义可阻塞栅格类型和不可阻塞栅格类型;然后按照各种类型特征进行建模,为每种类型设置权重和偏置;最后将各类型子图与初始栅格地图通过二维卷积操作进行匹配以阻塞无需拓展节点,在使用基于栅格地图的路径规划算法之前对输入栅格地图进行阻塞处理。阻塞节点不会断开原始栅格地图中存在最小成本路径。结果表明:该算法可应用于各种栅格环境地图中,在真实煤矿井下栅格地图环境下,与单独使用路径规划算法相比,使用本文算法结合A*算法与仅使用A*算法相比,该算法结合A*算法路径规划总时间减少60.0%,拓展节点数量减少60.4%;结合蚁群算法与仅使用蚁群算法相比,该算法结合蚁群算法路径规划总时间减少55.8%,迭代次数减少53.7%。所提算法极大缩小了路径规划时间,解决了路径规划死锁问题,在复杂环境地图中优势明显,保证事故救援的及时性。 展开更多
关键词 煤矿救援机器人 栅格地图 阻塞栅格地图 A*算法 蚁群算法
在线阅读 下载PDF
地下装配式建筑施工工期-成本-碳排放的均衡优化
13
作者 闫林君 王亚妮 +1 位作者 陈慧鑫 刘晶晶 《兰州大学学报(自然科学版)》 北大核心 2025年第3期357-363,共7页
为了地下装配式建筑施工关键要素的协调优化控制,以多属性效用函数为主,施工工期为决策变量,建立基于施工工期-成本-碳排放的均衡优化模型.通过分析施工工期-成本-碳排放要素之间的关系,将其以函数形式量化,构建地下装配式施工关键要素... 为了地下装配式建筑施工关键要素的协调优化控制,以多属性效用函数为主,施工工期为决策变量,建立基于施工工期-成本-碳排放的均衡优化模型.通过分析施工工期-成本-碳排放要素之间的关系,将其以函数形式量化,构建地下装配式施工关键要素的均衡优化目标函数.基于地下装配式施工对关键要素的作用机理,利用网络层次分析法确定均衡优化函数的决策偏好系数,用多种群蚁群协同进化算法得到均衡优化模型的最优解,并在整体模型的最优解下得到各关键要素的较优解.以实例构建施工任务均衡优化函数并进行优化分析.结果表明,当最优效用值μ=0.86时,预制构件关键要素达到均衡最优;当μ=0.87时,现场装配与吊装关键要素达到均衡最优;当μ=0.90时,后浇混凝土关键要素达到均衡最优;当μ=0.86时,养护关键要素达到均衡最优.结论验证了构建的均衡优化函数的合理性以及算法对求解模型的有效性. 展开更多
关键词 地下装配式建筑 关键要素 均衡优化 多属性效用函数 多种群蚁群协同进化算法
在线阅读 下载PDF
融合概率地图法的改进蚁群优化算法无人水面船路径规划
14
作者 白响恩 刘迪 徐笑锋 《上海海事大学学报》 北大核心 2025年第2期1-8,共8页
针对传统蚁群优化(ant colony optimization,ACO)算法存在收敛速度慢、易陷入局部最优等缺陷,对传统ACO算法进行改进,使其适用于无人水面船(unmanned surface vehicle,USV)在复杂和真实海域环境下的全局路径规划。利用概率地图法(probab... 针对传统蚁群优化(ant colony optimization,ACO)算法存在收敛速度慢、易陷入局部最优等缺陷,对传统ACO算法进行改进,使其适用于无人水面船(unmanned surface vehicle,USV)在复杂和真实海域环境下的全局路径规划。利用概率地图法(probabilistic roadmap method,PRM)规划的路径作为ACO算法初始信息素分布的依据,提高算法收敛速度;设计同时考虑路径长度和方向性的启发函数,避免传统ACO算法陷入局部最优;加入转角启发函数,减少传统ACO算法拐点数;引入障碍物密度启发函数,提高传统ACO算法规划路径时感知障碍物的能力;利用三次B样条曲线对规划的路径进一步优化,提高路径的平滑性。仿真实验表明:在不同规模的栅格地图上和真实海域环境下,改进ACO算法在拐点数和迭代次数上具有明显优势,且稳定性较好。所提出的改进ACO算法在航海实际应用中具有重要意义。 展开更多
关键词 无人水面船(USV) 路径规划 蚁群优化(ACO)算法 概率地图法 真实海域
在线阅读 下载PDF
边云协同的视频分析任务卸载优化策略 被引量:1
15
作者 童佳慧 李越 +1 位作者 李燕君 毛科技 《传感技术学报》 北大核心 2025年第1期128-134,共7页
当前交通、安防等领域广泛应用摄像头采集视频进行分析,传统将视频流直接上传到云平台处理的方式面临接入量受限、时延大等问题;边云协同架构下,将部分视频流卸载到边缘服务器可降低时延,可缓解云服务压力。考虑到视频分析任务对准确率... 当前交通、安防等领域广泛应用摄像头采集视频进行分析,传统将视频流直接上传到云平台处理的方式面临接入量受限、时延大等问题;边云协同架构下,将部分视频流卸载到边缘服务器可降低时延,可缓解云服务压力。考虑到视频分析任务对准确率、时延和能耗都有一定要求,提出通过同时控制视频帧的分辨率、边缘服务器部署卷积神经网络(Convolution Neural Network, CNN)模型的策略以及边云卸载决策,来最大化视频分析准确率,同时满足长期平均时延和能耗约束的问题。利用李雅普诺夫随机优化理论将原优化问题转化为每个时隙的独立优化问题,并采用蚁群优化算法求解得到动态卸载优化策略,包括视频帧的分辨率选择、边缘服务器部署哪些CNN模型以及边云卸载决策。仿真实验结果表明,所提动态卸载策略相比其他基线方案能够在满足约束的情况下获得更高的视频分析准确率。 展开更多
关键词 边云协同计算 卸载决策 李雅普诺夫理论 蚁群优化算法 视频分析
在线阅读 下载PDF
无人艇编队避碰路径规划与重规划
16
作者 刘伊婕 姜斌 +2 位作者 马亚杰 李文博 刘成瑞 《系统工程与电子技术》 北大核心 2025年第6期1964-1974,共11页
针对无人艇(unmanned surface vessel,USV)在障碍地图中的避碰路径规划问题,提出一种基于改进蚁群算法的静态全局路径规划避碰方法,并面向未知障碍给出一种局部路径重规划方案。运用栅格法对障碍环境进行建模;通过设计复合启发函数,提... 针对无人艇(unmanned surface vessel,USV)在障碍地图中的避碰路径规划问题,提出一种基于改进蚁群算法的静态全局路径规划避碰方法,并面向未知障碍给出一种局部路径重规划方案。运用栅格法对障碍环境进行建模;通过设计复合启发函数,提出一种信息素动态给予机制,引入混沌优化算子,解决传统蚁群算法易落入局部最优解和收敛性差的问题;基于鱼群效应提出一种局部路径重规划方案,解决USV编队在遭遇未知障碍时的路径重规划问题。对由5艘USV组成的分布式编队系统进行仿真实验,验证了所提方法对编队避碰问题的有效性。 展开更多
关键词 无人艇编队 路径规划 路径重规划 改进蚁群算法 混沌优化
在线阅读 下载PDF
基于优化蚁群算法的露天矿无人矿卡绕跨并行类三维路径规划
17
作者 高明宇 鲍久圣 +5 位作者 阴妍 胡德平 张可琨 朱晨钟 王茂森 王凯 《煤炭科学技术》 北大核心 2025年第S1期399-411,共13页
随着我国矿山智能化建设的不断推进,运输环节无人化已发展成为智慧矿山系统的重要组成部分。露天矿装卸载区等场景通常为非结构化作业区域,地形环境复杂且存在较多障碍物,无人矿卡作为露天矿物料运输的主要工具,由于其体型、载重大等特... 随着我国矿山智能化建设的不断推进,运输环节无人化已发展成为智慧矿山系统的重要组成部分。露天矿装卸载区等场景通常为非结构化作业区域,地形环境复杂且存在较多障碍物,无人矿卡作为露天矿物料运输的主要工具,由于其体型、载重大等特性,在该场景下的路径规划具有较大难度。针对无人矿卡在路径规划时绕行过多导致行驶效率低、路径质量差的问题,提出了一种基于优化蚁群算法的“类三维”路径规划方法,并通过仿真和试验验证了算法的有效性。首先,设计了一种基于激光点云的类三维地图构建方法,对滤波和配准后的有效点云数据进行栅格化处理并计算栅格高度,得到了包含障碍物高度信息的类三维地图。其次,以无人矿卡为研究对象,设计了一种三维碰撞检测方法,可在横向和纵向上分别判断障碍物与车体的冲突关系,并根据矿卡结构特征与道路工况制定了一种绕跨并行通行策略,直接跨越对车辆无威胁的障碍物,可在保证安全性的前提下有效提高矿卡的通行效率。然后,优化蚁群算法的初始信息素分布,提高算法的目标导向性,在改进信息素更新策略中考虑最优最差路径,以提高路径搜索的性能和效率;引入自适应多步长移动方式,并设计了一种引入跨障评价的多目标启发函数,仿真结果发现:优化后的蚁群算法在较少和较多障碍物场景搜索到的路径长度分别缩短了16.53%、16.79%,且路径拐点的减少有效提高了路径质量,使得算法生成的路径更符合实际需求。最后,通过搭建多障碍物场景模拟露天矿非结构化区域开展实车模拟试验,结果表明:搭载优化蚁群算法的无人矿卡试验车能跨越部分障碍物,在较少障碍物场景中的通行效率提升20.53%,在较多障碍物场景中的通行效率提升31.62%,且未与障碍物发生刮蹭。因此,所提出的基于优化蚁群算法的绕跨并行类三维路径规划方法可有效缩短路径长度,提高搜索效率与路径质量,在保证安全性的前提下充分发挥无人矿卡宽体高底盘特性。研究结果为露天矿卡无人驾驶技术开发及应用提供了理论参考。 展开更多
关键词 露天矿 无人矿卡 路径规划 类三维地图 优化蚁群算法
在线阅读 下载PDF
基于ACO-ANFIS的多变量生产过程在线质量预测
18
作者 杨薪玉 刘玉敏 王宁 《统计与决策》 北大核心 2025年第13期70-75,共6页
数据的高维度和非线性是影响多变量生产过程在线质量预测的瓶颈。文章将自适应神经模糊推理系统(ANFIS)和蚁群优化算法(ACO)相结合,提出了一种基于ACO-ANFIS的多变量生产过程在线质量预测新方法。首先,对生产过程数据采用模糊C均值聚类... 数据的高维度和非线性是影响多变量生产过程在线质量预测的瓶颈。文章将自适应神经模糊推理系统(ANFIS)和蚁群优化算法(ACO)相结合,提出了一种基于ACO-ANFIS的多变量生产过程在线质量预测新方法。首先,对生产过程数据采用模糊C均值聚类进行数据降维,有效地减少了模糊推理系统的规则数,提高了ANFIS模型的泛化能力;其次,采用ACO算法对ANFIS模型参数进行优化,提高了模型的预测精度;最后,运用所提方法对青霉素发酵过程进行实证分析,并与GA-ANFIS和PSO-ANFIS预测模型进行对比,验证了所提方法的有效性与准确性。 展开更多
关键词 多变量生产过程 质量预测 自适应神经模糊推理系统 蚁群优化算法
在线阅读 下载PDF
基于多策略混合鲸鱼-蚁群优化算法的装配序列优化
19
作者 黎响 王永 田德 《太阳能学报》 北大核心 2025年第2期565-575,共11页
装配序列规划(ASP)是风电机组设计和制造的关键内容,对产品的生产效率和成本有重要影响。SP问题是一个典型的NP完全问题,需使用有效的方法来搜索最优或近优的装配序列,但常用智能优化算法的参数值获取比较困难,导致在搜索效率和收敛精... 装配序列规划(ASP)是风电机组设计和制造的关键内容,对产品的生产效率和成本有重要影响。SP问题是一个典型的NP完全问题,需使用有效的方法来搜索最优或近优的装配序列,但常用智能优化算法的参数值获取比较困难,导致在搜索效率和收敛精度上存在一定局限性。为此,提出一种求解SP问题的多策略混合鲸鱼-蚁群优化算法。在计算过程中,使用增加精英反向学习策略(OBL)、差分进化算法(DE)的多策略混合鲸鱼算法优化蚁群算法的参数,然后再采用蚁群算法搜索最优或近优的装配序列。计算实验表明:多策略混合鲸鱼-蚁群优化算法降低了参数设置的复杂性,在求解SP问题上,与传统蚁群算法相比,算法的收敛速度和寻优能力得到很大提高。 展开更多
关键词 装配序列规划 风电机组 参数 多策略混合鲸鱼-蚁群算法
在线阅读 下载PDF
基于改进Ant-miner算法的分类规则挖掘 被引量:3
20
作者 肖菁 梁燕辉 《计算机工程》 CAS CSCD 2012年第17期162-165,共4页
为提高基于传统Ant-miner算法分类规则的预测准确性,提出一种基于改进Ant-miner的分类规则挖掘算法。利用样例在总样本中的密度及比例构造启发式函数,以避免在多个具有相同概率的选择条件下造成算法偏见。对剪枝规则按变异系数进行单点... 为提高基于传统Ant-miner算法分类规则的预测准确性,提出一种基于改进Ant-miner的分类规则挖掘算法。利用样例在总样本中的密度及比例构造启发式函数,以避免在多个具有相同概率的选择条件下造成算法偏见。对剪枝规则按变异系数进行单点变异,由此扩大规则的搜索空间,提高规则的预测准确度。在Ant-miner算法的信息素更新公式中加入挥发系数,使其更接近现实蚂蚁的觅食行为,防止算法过早收敛。基于UCI标准数据的实验结果表明,该算法相比传统Ant-miner算法具有更高的预测准确度。 展开更多
关键词 ant-miner算法 分类规则挖掘 数据挖掘 蚁群优化 规则修剪策略
在线阅读 下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部