The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex...The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs.展开更多
In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 ...In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 aluminum alloy are studied.The result show that ECAP induces numerous substructures and dislocations,effectively promoting the precipitation of theηʹphase exhibiting a bimodal structure during inter-pass aging.Following inter-pass aging and subsequent ECAP,the decrease in grain size(4.8μm)is together with the increase in dislocation density(1.24×10^(15) m^(−2))due to the pinning effect of the precipitated phase.Simultaneously,the dislocation motion causes the second phase particles to become even finer and more diffuse.The synergistic effects of precipitation strengthening,fine grain strengthening,and dislocation strengthening collectively enhance the high strength of aluminum alloys,with ultimate tensile strength and yield strength reaching approximately 610 and 565 MPa,respectively.Meanwhile,ductility remains largely unchanged,primarily due to coordinated grain boundary sliding and the uniform and fine dispersion of second phase particles.展开更多
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper...In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.展开更多
This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premi...This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premise that target information is perfectly accessible by all nodes,a centralized circular enclosing control strategy is derived for multiple UAVs connected by an undirected graph to allow for formation behaviors concerning the moving target.Besides,to avoid the requirement of target’s states being accessible for each UAV,fixed-time distributed observers are introduced to acquire the state estimates in a fixed-time sense,and the upper boundary of settling time can be determined offline irrespective of initial properties,greatly releasing the burdensome communication traffic.Then,with the aid of fixed-time distributed observers,a distributed circular circumnavigation controller is derived to force all UAVs to collaboratively evolve along the preset circles while keeping a desired angular spacing.It is inferred from Lyapunov stability that all errors are demonstrated to be convergent.Simulations are offered to verify the utility of proposed protocol.展开更多
Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitud...Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.展开更多
This paper investigates a new vortex wave imaging approach to improve the imaging quality of small metal targets of size less than 1.5 mm.Antennas with different spiral phase plates are designed to efficiently transmi...This paper investigates a new vortex wave imaging approach to improve the imaging quality of small metal targets of size less than 1.5 mm.Antennas with different spiral phase plates are designed to efficiently transmit vortex beams with orbital angular momentums(OAMs).By analyzing the OAM spectrum of the target,it was discovered that the predominant reflection contains a particular OAM mode that carries abundant azimuthal information.This can be explained by the OAM selectivity of the target and the guidance of the vortex transmitting beam.A simple reflection vortex imaging system was designed to capture the phase information.Measurement results show that the high image contrast reaches 14.9%,which is twice as high as that of the imaging without OAM.Both of simulations and experiments demonstrate that the vortex phase imaging approach proposed in this paper can effectively improve the imaging quality at 80 GHz.This approach is suitable for other millimeter wave imaging systems and is helpful to improve the resolution in anti-terrorism security checks.展开更多
The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase ...The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase of the skin return. Although the median value of the total cross-eye gain distribution had been analyzed in previous studies, the extreme values providing useful indications of the upper and lower bounds of the total cross-eye gain have not been analyzed until now. In this paper, the cumulative distribution function and the extreme values of the total cross-eye gain of MRCJ are derived. The angular error induced in threat monopulse radar as a figure of merit is used to analyze the performance of MRCJ system. Simulation results demonstrate the variation of the angular error and discuss the proper value of jamming-to-signal ratio(JSR) making the MRCJ system more effective in consideration of the whole distribution of the total cross-eye gain.展开更多
Ultrafine-grained(UFG) high purity aluminum exhibits a variety of attractive mechanical properties and special deformation behavior. Equal channel angular pressing(ECAP) process can be used to easily and effectively r...Ultrafine-grained(UFG) high purity aluminum exhibits a variety of attractive mechanical properties and special deformation behavior. Equal channel angular pressing(ECAP) process can be used to easily and effectively refine metals. The microstructure and microtexture evolutions and grain boundary characteristics of the high purity aluminum(99.998%) processed by ECAP at room temperature are investigated by means of TEM and EBSD. The results indicate that the shear deformation resistance increases with repeated EACP passes, and equiaxed grains with an average size of 0.9 μm in diameter are formed after five passes. Although the orientations distribution of grains tends to evolve toward random orientations, and microtextures(80°, 35°, 0°),(40°, 75°, 45°) and(0°, 85°, 45°) peak in the sample after five passes. The grain boundaries in UFG aluminum are high-angle geometrically necessary boundaries. It is suggested that the continuous dynamic recrystallization is responsible for the formation of ultrafine grains in high purity aluminum. Microstructure evolution in the high purity aluminum during ECAP is proposed.展开更多
Angular glint can be interpreted as a distortion of the radar echo signal phase front, or alternatively, a tilt of the direction of energy flow from the radial direction. As the complementarities and support of argume...Angular glint can be interpreted as a distortion of the radar echo signal phase front, or alternatively, a tilt of the direction of energy flow from the radial direction. As the complementarities and support of argumentation in our previous work, a general discussion about two concepts of angular glint is made based on electromagnetic theory to demonstrate that these two concepts are equivalent when geometrical optics approximation is used and' the receiving antenna is linearly polarized.展开更多
2017 aluminum alloy plates with an ultrafine grained (UFG) structure were produced by equal channel angular processing (ECAP) and then were joined by underwater friction stir welding (underwater FSW). X-ray diff...2017 aluminum alloy plates with an ultrafine grained (UFG) structure were produced by equal channel angular processing (ECAP) and then were joined by underwater friction stir welding (underwater FSW). X-ray diffractometer (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and microhardness tester were adopted to investigate the microstructural and mechanical characteristics of the FSW joint. The results indicate that an ultrafine grained microstructure with the mean grain size of-0.7 Ixm is obtained in the weld nugget by using water cooling. However, The FSW joint exhibits softening compared with the ultrafine grained based material and the heat affected zone (HAZ) has the lowest hardness owing to the coarsening of the strengthening precipitates.展开更多
The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further cause...The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.展开更多
Monopulse radar is widely used in military.Jamming monopulse radar has always been a research hotspot in electronic warfare(EW).Cross-eye jamming has always been considered as the most effective measures to jam with m...Monopulse radar is widely used in military.Jamming monopulse radar has always been a research hotspot in electronic warfare(EW).Cross-eye jamming has always been considered as the most effective measures to jam with monopulse radar.In this paper, we propose a multi-group three-tuple crosseye jamming structure where each group contains three antenna elements with a definite phase and an amplitude relationship.Then, based on the principle of monopulse angle measurement, the error angle is deduced theoretically.Simulations show that such a multi-group three-tuple cross-eye jamming structure performs better than the multi-element cross-eye jamming structure previously proposed, and the analysis of the centroid shows that the centroid of the structure proposed in this paper is more widely distributed in space.展开更多
The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction findin...The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.展开更多
A spatial channel propagation model is presented. Consider a uniform linear antenna (ULA) at the base station (BS) and narrowband signals transmitted at the mobile. In two types of propagating environments: indoo...A spatial channel propagation model is presented. Consider a uniform linear antenna (ULA) at the base station (BS) and narrowband signals transmitted at the mobile. In two types of propagating environments: indoor and outdoor, performance of low spatial correlation is investigated and some results are provided, which are significant to an,3. lyze the performance of diversity systems and configuration of army. The results also show that the configuration of array with either smaller angular spread or bigger angle of arrival (AOA) dominates the impact on spatial correlation, and that increasing angular spread or decreasing AOA diminishes, or even eliminates this impact.展开更多
The angular glint in the near field plays an important role on radar tracking errors. To predict it more efficiently for electrically large targets, a new method based on graphical electromagnetic computing (GRECO) ...The angular glint in the near field plays an important role on radar tracking errors. To predict it more efficiently for electrically large targets, a new method based on graphical electromagnetic computing (GRECO) is proposed. With the benefit of the graphic card, the GRECO prediction method is faster and more accurate than other methods. The proposed method at the first time considers the special case that the targets cannot be completely covered by radar beams, which makes the prediction of radar tracking errors more self-contained in practical circumstances. On the other hand, the process of the scattering center extraction is omitted, resulting in possible angular glint prediction in real time. Comparisons between the simulation results and the theoretical ones validate its correctness and value to academic research and engineering applications.展开更多
The concept for space interferometry from Polar or Equatorial Circular Medium Earth Orbits(the PECMEO concept) is a promising way to acquire the image of the"shadow"of the event horizon of Sagittarius A*with...The concept for space interferometry from Polar or Equatorial Circular Medium Earth Orbits(the PECMEO concept) is a promising way to acquire the image of the"shadow"of the event horizon of Sagittarius A*with an angular resolution of circa 5 microarcseconds. The concept is intended to decrease the size of the main reflector of the instrument to about 3 m using a precise orbit reconstruction based on Global Navigation Satellite System (GNSS) navigation, inter-satellite range and range-rate measurements, and data from the Attitude and Orbit Determination System (AODS). The paper provides the current progress on the definition of the subsystems required for the concept on the basis of simulations, radio regulations, and available technology. The paper proposes the requirement for the localization of the phase centre of the main reflector. The paper provides information about the visibility of GNSS satellites and the needed accuracies of the AODS. The paper proposes the frequency plan for the instrument and its Inter-Satellite Links (ISLs).The concepts for measurement of range and range-rate using ISLs (as well as for the data exchange at these ISLs) are presented. The block diagram of the interferometer is described and its sensitivity is estimated. The link budget for both ISLs is given as well as their critical components. The calculated measurement quality factors are given. The paper shows the expected performance of the sub-systems of the interferometer. The requirements for the localization of the main reflectors and the information about the availability of the GNSS satellites are based on the simulations results. The frequency plan is obtained according to the PECMEO concept and taking into account the radio regulations. The existing technology defines the accuracies of the AODS, both the link budgets and the fundamental measurement accuracies for ISLs, and the sensitivity of the instrument. The paper provides input information for the development of the orbit reconstruction filter and the whole PECMEO system.展开更多
基金supported by the National Nat-ural Science Foundation of China(Nos.12192251,12174185,92163216,and 62288101).
文摘The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs.
基金Project(52275350)supported by the National Natural Science Foundation of ChinaProject(0301006)supported by the International Cooperative Scientific Research Platform of SUES,China。
文摘In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 aluminum alloy are studied.The result show that ECAP induces numerous substructures and dislocations,effectively promoting the precipitation of theηʹphase exhibiting a bimodal structure during inter-pass aging.Following inter-pass aging and subsequent ECAP,the decrease in grain size(4.8μm)is together with the increase in dislocation density(1.24×10^(15) m^(−2))due to the pinning effect of the precipitated phase.Simultaneously,the dislocation motion causes the second phase particles to become even finer and more diffuse.The synergistic effects of precipitation strengthening,fine grain strengthening,and dislocation strengthening collectively enhance the high strength of aluminum alloys,with ultimate tensile strength and yield strength reaching approximately 610 and 565 MPa,respectively.Meanwhile,ductility remains largely unchanged,primarily due to coordinated grain boundary sliding and the uniform and fine dispersion of second phase particles.
基金Project(U2202255)supported by the National Natural Science Foundation of ChinaProject(2024JJ2076)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(2023Z092)supported by the Key Technology Research Program of Ningbo,China。
文摘In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62173312,61922037,61873115,and 61803348in part by the National Major Scientific Instruments Development Project under Grant 61927807+6 种基金in part by the State Key Laboratory of Deep Buried Target Damage under Grant No.DXMBJJ2019-02in part by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi under Grant 2020L0266in part by the Shanxi Province Science Foundation for Youths under Grant No.201701D221123in part by the Youth Academic North University of China under Grant No.QX201803in part by the Program for the Innovative Talents of Higher Education Institutions of Shanxiin part by the Shanxi“1331Project”Key Subjects Construction under Grant 1331KSCin part by the Supported by Shanxi Province Science Foundation for Excellent Youths。
文摘This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premise that target information is perfectly accessible by all nodes,a centralized circular enclosing control strategy is derived for multiple UAVs connected by an undirected graph to allow for formation behaviors concerning the moving target.Besides,to avoid the requirement of target’s states being accessible for each UAV,fixed-time distributed observers are introduced to acquire the state estimates in a fixed-time sense,and the upper boundary of settling time can be determined offline irrespective of initial properties,greatly releasing the burdensome communication traffic.Then,with the aid of fixed-time distributed observers,a distributed circular circumnavigation controller is derived to force all UAVs to collaboratively evolve along the preset circles while keeping a desired angular spacing.It is inferred from Lyapunov stability that all errors are demonstrated to be convergent.Simulations are offered to verify the utility of proposed protocol.
基金supported by the Equipment Pre-research Project(GK202002A020068)。
文摘Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.
基金Science,Technology and Innovation Project of Xiongan New Area (Grant No.2022XAGG0181)LiaoNing Revitalization Talents Program (Grant No.XLYC2007074)+1 种基金Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program (Grant No.RC220523)Natural Science Foundation of Liaoning Province of China (Grant Nos.2022-YGJC-03 and 2022-MS-034)to provide fund for conducting experiments。
文摘This paper investigates a new vortex wave imaging approach to improve the imaging quality of small metal targets of size less than 1.5 mm.Antennas with different spiral phase plates are designed to efficiently transmit vortex beams with orbital angular momentums(OAMs).By analyzing the OAM spectrum of the target,it was discovered that the predominant reflection contains a particular OAM mode that carries abundant azimuthal information.This can be explained by the OAM selectivity of the target and the guidance of the vortex transmitting beam.A simple reflection vortex imaging system was designed to capture the phase information.Measurement results show that the high image contrast reaches 14.9%,which is twice as high as that of the imaging without OAM.Both of simulations and experiments demonstrate that the vortex phase imaging approach proposed in this paper can effectively improve the imaging quality at 80 GHz.This approach is suitable for other millimeter wave imaging systems and is helpful to improve the resolution in anti-terrorism security checks.
基金supported by the Weapons and Equipment Research Foundation of China(304070102)
文摘The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase of the skin return. Although the median value of the total cross-eye gain distribution had been analyzed in previous studies, the extreme values providing useful indications of the upper and lower bounds of the total cross-eye gain have not been analyzed until now. In this paper, the cumulative distribution function and the extreme values of the total cross-eye gain of MRCJ are derived. The angular error induced in threat monopulse radar as a figure of merit is used to analyze the performance of MRCJ system. Simulation results demonstrate the variation of the angular error and discuss the proper value of jamming-to-signal ratio(JSR) making the MRCJ system more effective in consideration of the whole distribution of the total cross-eye gain.
基金Project(12JJ2028)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(201308430093)supported by the China Scholarship CouncilProjects(201012200006,2013zzts185,2012zzts066)supported by the Freedom Explore Program of Central South University,China
文摘Ultrafine-grained(UFG) high purity aluminum exhibits a variety of attractive mechanical properties and special deformation behavior. Equal channel angular pressing(ECAP) process can be used to easily and effectively refine metals. The microstructure and microtexture evolutions and grain boundary characteristics of the high purity aluminum(99.998%) processed by ECAP at room temperature are investigated by means of TEM and EBSD. The results indicate that the shear deformation resistance increases with repeated EACP passes, and equiaxed grains with an average size of 0.9 μm in diameter are formed after five passes. Although the orientations distribution of grains tends to evolve toward random orientations, and microtextures(80°, 35°, 0°),(40°, 75°, 45°) and(0°, 85°, 45°) peak in the sample after five passes. The grain boundaries in UFG aluminum are high-angle geometrically necessary boundaries. It is suggested that the continuous dynamic recrystallization is responsible for the formation of ultrafine grains in high purity aluminum. Microstructure evolution in the high purity aluminum during ECAP is proposed.
文摘Angular glint can be interpreted as a distortion of the radar echo signal phase front, or alternatively, a tilt of the direction of energy flow from the radial direction. As the complementarities and support of argumentation in our previous work, a general discussion about two concepts of angular glint is made based on electromagnetic theory to demonstrate that these two concepts are equivalent when geometrical optics approximation is used and' the receiving antenna is linearly polarized.
基金Projects(50774059, 51074119) supported by the National Natural Science Foundation of China
文摘2017 aluminum alloy plates with an ultrafine grained (UFG) structure were produced by equal channel angular processing (ECAP) and then were joined by underwater friction stir welding (underwater FSW). X-ray diffractometer (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and microhardness tester were adopted to investigate the microstructural and mechanical characteristics of the FSW joint. The results indicate that an ultrafine grained microstructure with the mean grain size of-0.7 Ixm is obtained in the weld nugget by using water cooling. However, The FSW joint exhibits softening compared with the ultrafine grained based material and the heat affected zone (HAZ) has the lowest hardness owing to the coarsening of the strengthening precipitates.
基金Project(2011CB706606) supported by the National Basic Research of ChinaProject(51405375) supported by the National Natural Science Foundation of China
文摘The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.
文摘Monopulse radar is widely used in military.Jamming monopulse radar has always been a research hotspot in electronic warfare(EW).Cross-eye jamming has always been considered as the most effective measures to jam with monopulse radar.In this paper, we propose a multi-group three-tuple crosseye jamming structure where each group contains three antenna elements with a definite phase and an amplitude relationship.Then, based on the principle of monopulse angle measurement, the error angle is deduced theoretically.Simulations show that such a multi-group three-tuple cross-eye jamming structure performs better than the multi-element cross-eye jamming structure previously proposed, and the analysis of the centroid shows that the centroid of the structure proposed in this paper is more widely distributed in space.
基金supported by the National Natural Science Foundation of China (61102106)the Fundamental Research Funds for the Central Universities (HEUCF1208 HEUCF100801)
文摘The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.
基金This project was supported by the National High-Tech Research and Development Program (2002AA123032).
文摘A spatial channel propagation model is presented. Consider a uniform linear antenna (ULA) at the base station (BS) and narrowband signals transmitted at the mobile. In two types of propagating environments: indoor and outdoor, performance of low spatial correlation is investigated and some results are provided, which are significant to an,3. lyze the performance of diversity systems and configuration of army. The results also show that the configuration of array with either smaller angular spread or bigger angle of arrival (AOA) dominates the impact on spatial correlation, and that increasing angular spread or decreasing AOA diminishes, or even eliminates this impact.
基金supported by the National Natural Science Foundation of China (60871069)
文摘The angular glint in the near field plays an important role on radar tracking errors. To predict it more efficiently for electrically large targets, a new method based on graphical electromagnetic computing (GRECO) is proposed. With the benefit of the graphic card, the GRECO prediction method is faster and more accurate than other methods. The proposed method at the first time considers the special case that the targets cannot be completely covered by radar beams, which makes the prediction of radar tracking errors more self-contained in practical circumstances. On the other hand, the process of the scattering center extraction is omitted, resulting in possible angular glint prediction in real time. Comparisons between the simulation results and the theoretical ones validate its correctness and value to academic research and engineering applications.
文摘The concept for space interferometry from Polar or Equatorial Circular Medium Earth Orbits(the PECMEO concept) is a promising way to acquire the image of the"shadow"of the event horizon of Sagittarius A*with an angular resolution of circa 5 microarcseconds. The concept is intended to decrease the size of the main reflector of the instrument to about 3 m using a precise orbit reconstruction based on Global Navigation Satellite System (GNSS) navigation, inter-satellite range and range-rate measurements, and data from the Attitude and Orbit Determination System (AODS). The paper provides the current progress on the definition of the subsystems required for the concept on the basis of simulations, radio regulations, and available technology. The paper proposes the requirement for the localization of the phase centre of the main reflector. The paper provides information about the visibility of GNSS satellites and the needed accuracies of the AODS. The paper proposes the frequency plan for the instrument and its Inter-Satellite Links (ISLs).The concepts for measurement of range and range-rate using ISLs (as well as for the data exchange at these ISLs) are presented. The block diagram of the interferometer is described and its sensitivity is estimated. The link budget for both ISLs is given as well as their critical components. The calculated measurement quality factors are given. The paper shows the expected performance of the sub-systems of the interferometer. The requirements for the localization of the main reflectors and the information about the availability of the GNSS satellites are based on the simulations results. The frequency plan is obtained according to the PECMEO concept and taking into account the radio regulations. The existing technology defines the accuracies of the AODS, both the link budgets and the fundamental measurement accuracies for ISLs, and the sensitivity of the instrument. The paper provides input information for the development of the orbit reconstruction filter and the whole PECMEO system.