针对过程复杂且结构未知的对象,在保证模型有效性的前提下,根据数据信息构建简单模型来简化控制器的求解是亟待解决的问题。以受控自回归模型为例,提出一种基于修正最小角回归算法的稀疏辨识方法。首先将系统模型转化为过参数化的高维...针对过程复杂且结构未知的对象,在保证模型有效性的前提下,根据数据信息构建简单模型来简化控制器的求解是亟待解决的问题。以受控自回归模型为例,提出一种基于修正最小角回归算法的稀疏辨识方法。首先将系统模型转化为过参数化的高维稀疏模型,然后将最小角回归算法用于稀疏系统辨识,并提出绝对角度停止准则,使算法经过少量的迭代即可获得模型的稀疏参数估计,并同时获得有效的时滞和阶次估计。结合辨识得到的受控自回归模型,引入一种基于指定相位点频率和增益的比例-积分-微分(proportional integral derivative,PID)控制器。数值仿真和平衡机器人的姿态控制仿真表明,该稀疏辨识算法在低数据量下具有较高的辨识精度,建立的模型具有较好的泛化性能,控制器具有良好的控制效果。展开更多
该文通过空域匹配滤波器,将阵元空间中的均匀圆阵转化为波束空间中的均匀线阵,并将时空匹配滤波器的输出转换到频域,利用 DOA Matrix方法解决了非周期扩频系统中均匀圆阵条件下多径信号的角度和时延的联合估计问题及常规空域处理方法中...该文通过空域匹配滤波器,将阵元空间中的均匀圆阵转化为波束空间中的均匀线阵,并将时空匹配滤波器的输出转换到频域,利用 DOA Matrix方法解决了非周期扩频系统中均匀圆阵条件下多径信号的角度和时延的联合估计问题及常规空域处理方法中多径数不能大于阵元数的问题。理论分析和仿真实验结果表明,该方法是一种无偏估计,且其估计精度远远高于滑动相关方法。展开更多
传统算法通常采取舍弃互质阵列的“差联合”阵列形成离散虚拟阵元,只利用其中连续虚拟阵元进行离波方向角(direction of departure,DOD)和波达方向角(direction of arrival,DOA)联合估计,存在自由度提升受限、估计性能不佳等问题。对此...传统算法通常采取舍弃互质阵列的“差联合”阵列形成离散虚拟阵元,只利用其中连续虚拟阵元进行离波方向角(direction of departure,DOD)和波达方向角(direction of arrival,DOA)联合估计,存在自由度提升受限、估计性能不佳等问题。对此,提出基于虚拟阵元内插的互质阵列目标DOD和DOA联合估计算法。首先,将两个互质子阵以零点为中心布列,分别构成双基地多输入多输出(multiple input multiple output,MIMO)雷达的发射阵列和接收阵列,该布阵结构将传统的虚拟阵元由阵列“差联合”结构形式变成“和联合”结构形式,降低了虚拟阵列的冗余度。其次,在形成的虚拟阵元基础上,通过在虚拟阵列孔洞位置内插虚拟阵元使其连续,对于内插的虚拟阵元无实际接收信号问题,基于最小化核范数优化理论,采用协方差矩阵Toeplitz化重建的方式恢复内插虚拟阵元的等价接收信号,利于所有虚拟阵元层面的角度联合估计。最后,针对因角度配对导致的高运算量问题,结合降维多重信号分类(reduced dimension multiple signal classification,RD-MUSIC)算法使角度自动配对,从而减小算法运算复杂度。有效提高了目标分辨力和角度联合估计性能,仿真实验验证了算法的有效性。展开更多
文摘针对过程复杂且结构未知的对象,在保证模型有效性的前提下,根据数据信息构建简单模型来简化控制器的求解是亟待解决的问题。以受控自回归模型为例,提出一种基于修正最小角回归算法的稀疏辨识方法。首先将系统模型转化为过参数化的高维稀疏模型,然后将最小角回归算法用于稀疏系统辨识,并提出绝对角度停止准则,使算法经过少量的迭代即可获得模型的稀疏参数估计,并同时获得有效的时滞和阶次估计。结合辨识得到的受控自回归模型,引入一种基于指定相位点频率和增益的比例-积分-微分(proportional integral derivative,PID)控制器。数值仿真和平衡机器人的姿态控制仿真表明,该稀疏辨识算法在低数据量下具有较高的辨识精度,建立的模型具有较好的泛化性能,控制器具有良好的控制效果。
文摘该文通过空域匹配滤波器,将阵元空间中的均匀圆阵转化为波束空间中的均匀线阵,并将时空匹配滤波器的输出转换到频域,利用 DOA Matrix方法解决了非周期扩频系统中均匀圆阵条件下多径信号的角度和时延的联合估计问题及常规空域处理方法中多径数不能大于阵元数的问题。理论分析和仿真实验结果表明,该方法是一种无偏估计,且其估计精度远远高于滑动相关方法。
文摘传统算法通常采取舍弃互质阵列的“差联合”阵列形成离散虚拟阵元,只利用其中连续虚拟阵元进行离波方向角(direction of departure,DOD)和波达方向角(direction of arrival,DOA)联合估计,存在自由度提升受限、估计性能不佳等问题。对此,提出基于虚拟阵元内插的互质阵列目标DOD和DOA联合估计算法。首先,将两个互质子阵以零点为中心布列,分别构成双基地多输入多输出(multiple input multiple output,MIMO)雷达的发射阵列和接收阵列,该布阵结构将传统的虚拟阵元由阵列“差联合”结构形式变成“和联合”结构形式,降低了虚拟阵列的冗余度。其次,在形成的虚拟阵元基础上,通过在虚拟阵列孔洞位置内插虚拟阵元使其连续,对于内插的虚拟阵元无实际接收信号问题,基于最小化核范数优化理论,采用协方差矩阵Toeplitz化重建的方式恢复内插虚拟阵元的等价接收信号,利于所有虚拟阵元层面的角度联合估计。最后,针对因角度配对导致的高运算量问题,结合降维多重信号分类(reduced dimension multiple signal classification,RD-MUSIC)算法使角度自动配对,从而减小算法运算复杂度。有效提高了目标分辨力和角度联合估计性能,仿真实验验证了算法的有效性。