Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services...Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.展开更多
System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose sign...System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose significant challenges for efficient decision-making,necessitating a modular multiagent control system.Deep Reinforcement Learning(DRL)and Decision Tree(DT)have been utilized for these complex decision-making tasks,but each has its limitations:DRL is highly adaptive but lacks interpretability,while DT is inherently interpretable but has limited adaptability.To overcome these challenges,we propose the Adaptive Interpretable Decision Tree(AIDT),an evolutionary-based algorithm that is both adaptable to diverse environmental settings and highly interpretable in its decision-making processes.We first construct a Markov decision process(MDP)-based simulation environment using the Cooperative Submarine Search task as a representative scenario for training and testing the proposed method.Specifically,we use the heat map as a state variable to address the issue of multi-agent input state proliferation.Next,we introduce the curiosity-guiding intrinsic reward to encourage comprehensive exploration and enhance algorithm performance.Additionally,we incorporate decision tree size as an influence factor in the adaptation process to balance task completion with computational efficiency.To further improve the generalization capability of the decision tree,we apply a normalization method to ensure consistent processing of input states.Finally,we validate the proposed algorithm in different environmental settings,and the results demonstrate both its adaptability and interpretability.展开更多
Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian...Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.展开更多
Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important f...Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF.展开更多
针对水电机组状态监测数据量逐步增大,数据质量差的问题,提出了一种基于改进K维树(K-Dimensional Tree,KD-Tree)与基于密度的空间聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)的水电机组状态监测数...针对水电机组状态监测数据量逐步增大,数据质量差的问题,提出了一种基于改进K维树(K-Dimensional Tree,KD-Tree)与基于密度的空间聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)的水电机组状态监测数据清洗方法,首先对输入数据建立KD-Tree,再使用DBSCAN在最近邻样本上扫描完成聚类,聚类结束以后会分离出噪声点,将噪声点去除即可完成对水电机组状态监测数据清洗。选取某水电站状态监测系统上导摆度数据1 088条,再以相同时间间隔插入随机数据100条,通过算例与常规DBScan、K-means、OCSVM算法对比聚类性能与时间性能,所提出的方法识别正确率最高,为97.78%,消耗时间最少,为0.007 732 s,数据清洗效果最优,并可以大幅减少计算时间。展开更多
计算能力弱、存储容量小是普通物联网节点的典型特征,复杂的部署环境和不稳定的无线链路又会导致物联网网络状态频繁变化.所以,物联网中固定的传输路径无法提供高效的感知及数据传输服务.例如典型的树型路由结构中,靠近树根的节点要提...计算能力弱、存储容量小是普通物联网节点的典型特征,复杂的部署环境和不稳定的无线链路又会导致物联网网络状态频繁变化.所以,物联网中固定的传输路径无法提供高效的感知及数据传输服务.例如典型的树型路由结构中,靠近树根的节点要提供的传输任务较重,能量消耗更快,会导致整个网络部署周期变短.本文提出了一种路径可实时定义的物联网传输模型(IoT Transmission Model with Real-time Path Definition,ITRP),物联子网中所有节点将邻接关系上报给网关设备,由性能占优的有源供电网关设备来定义网络的实时路由树.网关向物联子网节点发送报文时会携带转发标签,后续转发节点只需根据标签完成报文传输,并根据上一跳信息建立其到网关的反向传输路径.ITRP模型可围绕特定的网络服务目标(节能、传输安全、带宽保障等)收集相关网络状态信息,并周期性调整路由拓扑,实现物联网传输服务的优化.实验面向能量均衡目标展开,经过10个信息采集周期,ITRP模型相对确定性路由模型能量最低节点的能耗比为44%~86%,相对自适应多径传输模型能量最低节点的能耗比为63%~86%;而且,ITRP模型只需较小的标签代价,实验环境中报文的平均标签长度不超过5比特.展开更多
文摘Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.
文摘System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose significant challenges for efficient decision-making,necessitating a modular multiagent control system.Deep Reinforcement Learning(DRL)and Decision Tree(DT)have been utilized for these complex decision-making tasks,but each has its limitations:DRL is highly adaptive but lacks interpretability,while DT is inherently interpretable but has limited adaptability.To overcome these challenges,we propose the Adaptive Interpretable Decision Tree(AIDT),an evolutionary-based algorithm that is both adaptable to diverse environmental settings and highly interpretable in its decision-making processes.We first construct a Markov decision process(MDP)-based simulation environment using the Cooperative Submarine Search task as a representative scenario for training and testing the proposed method.Specifically,we use the heat map as a state variable to address the issue of multi-agent input state proliferation.Next,we introduce the curiosity-guiding intrinsic reward to encourage comprehensive exploration and enhance algorithm performance.Additionally,we incorporate decision tree size as an influence factor in the adaptation process to balance task completion with computational efficiency.To further improve the generalization capability of the decision tree,we apply a normalization method to ensure consistent processing of input states.Finally,we validate the proposed algorithm in different environmental settings,and the results demonstrate both its adaptability and interpretability.
文摘Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.
基金Project(52374153)supported by the National Natural Science Foundation of ChinaProject(2023zzts0726)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF.
文摘计算能力弱、存储容量小是普通物联网节点的典型特征,复杂的部署环境和不稳定的无线链路又会导致物联网网络状态频繁变化.所以,物联网中固定的传输路径无法提供高效的感知及数据传输服务.例如典型的树型路由结构中,靠近树根的节点要提供的传输任务较重,能量消耗更快,会导致整个网络部署周期变短.本文提出了一种路径可实时定义的物联网传输模型(IoT Transmission Model with Real-time Path Definition,ITRP),物联子网中所有节点将邻接关系上报给网关设备,由性能占优的有源供电网关设备来定义网络的实时路由树.网关向物联子网节点发送报文时会携带转发标签,后续转发节点只需根据标签完成报文传输,并根据上一跳信息建立其到网关的反向传输路径.ITRP模型可围绕特定的网络服务目标(节能、传输安全、带宽保障等)收集相关网络状态信息,并周期性调整路由拓扑,实现物联网传输服务的优化.实验面向能量均衡目标展开,经过10个信息采集周期,ITRP模型相对确定性路由模型能量最低节点的能耗比为44%~86%,相对自适应多径传输模型能量最低节点的能耗比为63%~86%;而且,ITRP模型只需较小的标签代价,实验环境中报文的平均标签长度不超过5比特.