Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference...Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.展开更多
In this article, the authors study the exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction by hyperbolic tangent function expansion method, hyperbolic secant expansion m...In this article, the authors study the exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction by hyperbolic tangent function expansion method, hyperbolic secant expansion method, and Jacobi elliptic function ex- pansion method. They obtain more exact traveling wave solutions including trigonometric function solutions, rational function solutions, and more generally solitary waves, which are called classical bright soliton, W-shaped soliton, and M-shaped soliton.展开更多
Based on the Lagrangian action density under Born-Infeld type dynamics and motivated by the one-dimensional prescribed mean curvature equation,we investigate the polynomial function model in Born-Infeld theory in this...Based on the Lagrangian action density under Born-Infeld type dynamics and motivated by the one-dimensional prescribed mean curvature equation,we investigate the polynomial function model in Born-Infeld theory in this paper with the form of-([10α(φ′)^(2)]φ′)′=λf(φ(x)),whereλ>0 is a real parameter,f∈C 2(0,+∞)is a nonlinear function.We are interested in the exact number of positive solutions of the above nonlinear equation.We specifically develop for the problem combined with a careful analysis of a time-map method.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the Natural Science Foundation (Grant No 200408020103), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia, China and the Youth Foundation (Grant No QN004024) of Inner Mongolia Normal University, China.
文摘Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.
基金Supported by the National Natural Science Foundation of China (10871075)Natural Science Foundation of Guangdong Province,China (9151064201000040)
文摘In this article, the authors study the exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction by hyperbolic tangent function expansion method, hyperbolic secant expansion method, and Jacobi elliptic function ex- pansion method. They obtain more exact traveling wave solutions including trigonometric function solutions, rational function solutions, and more generally solitary waves, which are called classical bright soliton, W-shaped soliton, and M-shaped soliton.
基金Supported by National Natural Science Foundation of He’nan Province of China(Grant No.222300420416)National Natural Science Foundation of China(Grant Nos.11471099,11971148)Graduate Talents Program of Henan University(Grant No.SYLYC2022078).
文摘Based on the Lagrangian action density under Born-Infeld type dynamics and motivated by the one-dimensional prescribed mean curvature equation,we investigate the polynomial function model in Born-Infeld theory in this paper with the form of-([10α(φ′)^(2)]φ′)′=λf(φ(x)),whereλ>0 is a real parameter,f∈C 2(0,+∞)is a nonlinear function.We are interested in the exact number of positive solutions of the above nonlinear equation.We specifically develop for the problem combined with a careful analysis of a time-map method.