Nitrogen(N)and phosphorus(P)are mineral nutrients essential for plant growth and development,playing a crucial role throughout the plant life cycle.Cotton,a globally significant textile crop,has a particularly high de...Nitrogen(N)and phosphorus(P)are mineral nutrients essential for plant growth and development,playing a crucial role throughout the plant life cycle.Cotton,a globally significant textile crop,has a particularly high demand for N fertilizer across its developmental stages.This review explores the effects of adequate or deficient N and P levels on cotton growth phases,focusing on their influence on physiological processes and molecular mechanisms.Key topics include the regulation of N-and P-related enzymes,hormones,and genes,as well as the complex interplay of N-and P-related signaling pathways from the aspects of N-P signaling integration to regulate root development,N-P signaling integration to regulate nutrient uptake,and regulation of N-P interactions—a frontier in current research.Strategies for improving N and P use efficiency are also discussed,including developing high-efficiency cotton cultivars and identifying functional genes to enhance productivity.Generally speaking,we take model plants as a reference in the hope of coming up with new strategies for the efficient utilization of N and P in cotton.展开更多
To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. D...To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. During investigation, it had given prominence for the water and fertilizer coupling effects of precise irrigation and site specific nutrient management, the characteristics of integration on controlled irrigation, controlled drainage and wetland ecosystem non-point source pollution control. Then the water and fertilizer integrated management mode of paddy field was put forward in Taihu basin where the water production efficiency increased to 1.64 kg. m-3, water saved 37.8%, fertilizer use efficiency raised 15,4%, yield raised 10%, and N, P load decreased 26%-72%. The modern agricultural and farmland ecosystems that control and cut down the farm non-point source pollution came into being, which can be a reference by Taihu basin to control its agricultural non-point source pollution and eutrophicated water body.展开更多
After the sewage treatment, putting the wet sludge in which the heavy metal content is extremely low, corrupt and broken straw, bentonite, urea in proportioning according to the certain ratio, mixing well-distributed,...After the sewage treatment, putting the wet sludge in which the heavy metal content is extremely low, corrupt and broken straw, bentonite, urea in proportioning according to the certain ratio, mixing well-distributed, taking the shape of Nitrogen slow-release fertilizers, doing the dynamic bioleaching test by the method of Artificial rainfall simulation, researching the slow-release characteristic, water retention. When the mass ratio of the wet sludge whose water content is 82.5%: bentonite: corrupt and broken straw: urea is 62.5: 12.5: 12.5: 12.5, drip washing the 10g Nitrogen slow-release fertilizers by the 80ml distilled water after 48h, the residue rate of urea is 29.63%; Under the room temperature of 25 ℃, 77%RH, moisture evaporate 46.32% after 60 h. The results demonstrate that the slow-release fertilizer has a good release-effect of nitrogen and water conservation effect. It provides the basic for the development and application of the sewage in the aspect of Nitrogen slow-release fertilizers.展开更多
针对河西绿洲灌区小麦生产中氮肥投入高、产量不稳定等问题,通过研究不同施氮水平下土壤调理剂配施缓释氮肥对小麦地上干物质积累动态与产量的影响,为构建河西绿洲灌区减氮小麦的高产高效栽培技术提供实践依据。本研究于2022—2023年在...针对河西绿洲灌区小麦生产中氮肥投入高、产量不稳定等问题,通过研究不同施氮水平下土壤调理剂配施缓释氮肥对小麦地上干物质积累动态与产量的影响,为构建河西绿洲灌区减氮小麦的高产高效栽培技术提供实践依据。本研究于2022—2023年在河西绿洲灌区进行,采用裂区设计,主区为:凹凸棒(A)、生物炭(B)和无调理剂(C);裂区为2种氮肥类型:传统化学氮肥(T)和缓释氮肥(S);裂裂区为2个施氮水平:常规施氮量(N2:180 kg hm^(-2))和减量施氮30%(N1:126 kg hm^(-2)),通过测定小麦不同生育阶段的干物质积累量、开花前后干物质转运量、籽粒产量和生物产量,量化最大增长速率及其出现时间,明确不同土壤调理剂配施缓释氮肥对小麦干物质积累特性及产量的影响。结果表明,N1较N2降低小麦地上部干物质积累量10.4%,缓释氮肥较传统化学氮肥提高小麦地上部干物质积累量7.0%,与无调理剂相比,凹凸棒和生物炭提高小麦地上部干物质积累量为7.8%与10.9%。结合土壤调理剂、氮肥类型与施氮量三因素,凹凸棒配施缓释氮肥结合常规施氮减量30%(ASN1)与生物炭配施缓释氮肥结合常规施氮减量30%(BSN1),分别较无调理剂配施传统化学氮肥结合常规施氮量(CTN2)提高出苗后45~95 d小麦干物质积累量9.0%与10.7%,提高出苗后45~90 d小麦干物质积累速率9.7%与12.6%。拟合结果表明,ASN1、BSN1较CTN2推迟小麦干物质最大增长速率出现时间为3.1 d与4.2 d,提高小麦干物质最大增长速率为6.3%与8.1%。ASN1与BSN1提高了小麦开花前后干物质对籽粒的贡献率,ASN1、BSN1较CTN2增产6.8%与8.5%,其增产主要源于穗粒数和千粒重的提高。BSN1较ASN1提高小麦穗粒数、千粒重为7.8%与8.1%,从各方面来看,BSN1的增产优势更为突出。因此,生物炭配施缓释氮肥可作为西北灌区节氮30%时小麦产量提升的有效措施。展开更多
基金supported by Supported by National Key Laboratory of Cotton Bio-breeding and Integrated Utilization(CB2023C07)Xinjiang Autonomous Region"Three Agricultural"Backbone Talent Training Program(2022SNGGNT024)Xinjiang Huyanghe City Science and Technology Program(2023C08).
文摘Nitrogen(N)and phosphorus(P)are mineral nutrients essential for plant growth and development,playing a crucial role throughout the plant life cycle.Cotton,a globally significant textile crop,has a particularly high demand for N fertilizer across its developmental stages.This review explores the effects of adequate or deficient N and P levels on cotton growth phases,focusing on their influence on physiological processes and molecular mechanisms.Key topics include the regulation of N-and P-related enzymes,hormones,and genes,as well as the complex interplay of N-and P-related signaling pathways from the aspects of N-P signaling integration to regulate root development,N-P signaling integration to regulate nutrient uptake,and regulation of N-P interactions—a frontier in current research.Strategies for improving N and P use efficiency are also discussed,including developing high-efficiency cotton cultivars and identifying functional genes to enhance productivity.Generally speaking,we take model plants as a reference in the hope of coming up with new strategies for the efficient utilization of N and P in cotton.
基金Supported by NSFC (50839002)Society Development Program of Jiangsu Province (BS2007139)
文摘To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. During investigation, it had given prominence for the water and fertilizer coupling effects of precise irrigation and site specific nutrient management, the characteristics of integration on controlled irrigation, controlled drainage and wetland ecosystem non-point source pollution control. Then the water and fertilizer integrated management mode of paddy field was put forward in Taihu basin where the water production efficiency increased to 1.64 kg. m-3, water saved 37.8%, fertilizer use efficiency raised 15,4%, yield raised 10%, and N, P load decreased 26%-72%. The modern agricultural and farmland ecosystems that control and cut down the farm non-point source pollution came into being, which can be a reference by Taihu basin to control its agricultural non-point source pollution and eutrophicated water body.
文摘After the sewage treatment, putting the wet sludge in which the heavy metal content is extremely low, corrupt and broken straw, bentonite, urea in proportioning according to the certain ratio, mixing well-distributed, taking the shape of Nitrogen slow-release fertilizers, doing the dynamic bioleaching test by the method of Artificial rainfall simulation, researching the slow-release characteristic, water retention. When the mass ratio of the wet sludge whose water content is 82.5%: bentonite: corrupt and broken straw: urea is 62.5: 12.5: 12.5: 12.5, drip washing the 10g Nitrogen slow-release fertilizers by the 80ml distilled water after 48h, the residue rate of urea is 29.63%; Under the room temperature of 25 ℃, 77%RH, moisture evaporate 46.32% after 60 h. The results demonstrate that the slow-release fertilizer has a good release-effect of nitrogen and water conservation effect. It provides the basic for the development and application of the sewage in the aspect of Nitrogen slow-release fertilizers.
文摘针对河西绿洲灌区小麦生产中氮肥投入高、产量不稳定等问题,通过研究不同施氮水平下土壤调理剂配施缓释氮肥对小麦地上干物质积累动态与产量的影响,为构建河西绿洲灌区减氮小麦的高产高效栽培技术提供实践依据。本研究于2022—2023年在河西绿洲灌区进行,采用裂区设计,主区为:凹凸棒(A)、生物炭(B)和无调理剂(C);裂区为2种氮肥类型:传统化学氮肥(T)和缓释氮肥(S);裂裂区为2个施氮水平:常规施氮量(N2:180 kg hm^(-2))和减量施氮30%(N1:126 kg hm^(-2)),通过测定小麦不同生育阶段的干物质积累量、开花前后干物质转运量、籽粒产量和生物产量,量化最大增长速率及其出现时间,明确不同土壤调理剂配施缓释氮肥对小麦干物质积累特性及产量的影响。结果表明,N1较N2降低小麦地上部干物质积累量10.4%,缓释氮肥较传统化学氮肥提高小麦地上部干物质积累量7.0%,与无调理剂相比,凹凸棒和生物炭提高小麦地上部干物质积累量为7.8%与10.9%。结合土壤调理剂、氮肥类型与施氮量三因素,凹凸棒配施缓释氮肥结合常规施氮减量30%(ASN1)与生物炭配施缓释氮肥结合常规施氮减量30%(BSN1),分别较无调理剂配施传统化学氮肥结合常规施氮量(CTN2)提高出苗后45~95 d小麦干物质积累量9.0%与10.7%,提高出苗后45~90 d小麦干物质积累速率9.7%与12.6%。拟合结果表明,ASN1、BSN1较CTN2推迟小麦干物质最大增长速率出现时间为3.1 d与4.2 d,提高小麦干物质最大增长速率为6.3%与8.1%。ASN1与BSN1提高了小麦开花前后干物质对籽粒的贡献率,ASN1、BSN1较CTN2增产6.8%与8.5%,其增产主要源于穗粒数和千粒重的提高。BSN1较ASN1提高小麦穗粒数、千粒重为7.8%与8.1%,从各方面来看,BSN1的增产优势更为突出。因此,生物炭配施缓释氮肥可作为西北灌区节氮30%时小麦产量提升的有效措施。