Flower-shape clustering GaN nanorods are successfully synthesized on Si(111) substrates through ammoniating Ga2O3/ZnO films at 950℃. The as-grown products are characterized by x-ray diffraction (XRD), scanning el...Flower-shape clustering GaN nanorods are successfully synthesized on Si(111) substrates through ammoniating Ga2O3/ZnO films at 950℃. The as-grown products are characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), field-emission transmission electron microscope (FETEM), Fourier transform infrared spectrum (FTIR) and fluorescence spectrophotometer. The SEM images demonstrate that the products consist of flower-shape clustering GaN nanorods. The XRD indicates that the reflections of the samples can be indexed to the hexagonal GaN phase and HRTEM shows that the nanorods are of pure hexagonal GaN single crystal. The photoluminescence (PL) spectrum indicates that the GaN nanorods have a good emission property. The growth mechanism is also briefly discussed.展开更多
Rechargeable sodium metal batteries constitute a cost-effective option for energy storage although sodium shows some drawbacks in terms of reactivity with organic solvents and dendritic growth.Here we demonstrate that...Rechargeable sodium metal batteries constitute a cost-effective option for energy storage although sodium shows some drawbacks in terms of reactivity with organic solvents and dendritic growth.Here we demonstrate that an organic dye,indanthrone blue,behaves as an efficient cathode material for the development of secondary sodium metal batteries when combined with novel inorganic electrolytes.These electrolytes are ammonia solvates,known as liquid ammoniates,which can be formulated as NaI·3.3NH_(3) and NaBF_(4)·2.5NH_(3).They impart excellent stability to sodium metal,and they favor sodium non-dendritic growth linked to their exceedingly high sodium ion concentration.This advantage is complemented by a high specific conductivity.The battery described here can last hundreds of cycles at 10 C while keeping a Coulombic efficiency of 99%from the first cycle.Because of the high capacity of the cathode and the superior physicochemical properties of the electrolytes,the battery can reach a specific energy value as high as 210 W h kgIB^(-1),and a high specific power of 2.2 kW kgIB^(-1),even at below room temperature(4℃).Importantly,the battery is based on abundant and cost-effective materials,bearing promise for its application in large-scale energy storage.展开更多
基金Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No 90201025) and the National Natural Science Foundation of China (Grant No 90301002).
文摘Flower-shape clustering GaN nanorods are successfully synthesized on Si(111) substrates through ammoniating Ga2O3/ZnO films at 950℃. The as-grown products are characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), field-emission transmission electron microscope (FETEM), Fourier transform infrared spectrum (FTIR) and fluorescence spectrophotometer. The SEM images demonstrate that the products consist of flower-shape clustering GaN nanorods. The XRD indicates that the reflections of the samples can be indexed to the hexagonal GaN phase and HRTEM shows that the nanorods are of pure hexagonal GaN single crystal. The photoluminescence (PL) spectrum indicates that the GaN nanorods have a good emission property. The growth mechanism is also briefly discussed.
基金developed in the context of project RTI2018–102061–B–I00 financed by FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de InvestigaciónThe Generalitat Valenciana through project PROMETEO/2020/089 is also gratefully acknowledged。
文摘Rechargeable sodium metal batteries constitute a cost-effective option for energy storage although sodium shows some drawbacks in terms of reactivity with organic solvents and dendritic growth.Here we demonstrate that an organic dye,indanthrone blue,behaves as an efficient cathode material for the development of secondary sodium metal batteries when combined with novel inorganic electrolytes.These electrolytes are ammonia solvates,known as liquid ammoniates,which can be formulated as NaI·3.3NH_(3) and NaBF_(4)·2.5NH_(3).They impart excellent stability to sodium metal,and they favor sodium non-dendritic growth linked to their exceedingly high sodium ion concentration.This advantage is complemented by a high specific conductivity.The battery described here can last hundreds of cycles at 10 C while keeping a Coulombic efficiency of 99%from the first cycle.Because of the high capacity of the cathode and the superior physicochemical properties of the electrolytes,the battery can reach a specific energy value as high as 210 W h kgIB^(-1),and a high specific power of 2.2 kW kgIB^(-1),even at below room temperature(4℃).Importantly,the battery is based on abundant and cost-effective materials,bearing promise for its application in large-scale energy storage.