-
题名长春市大气环境中PM_(10)二重源解析研究
被引量:6
- 1
-
-
作者
王菊
刘禹彤
赵秀敏
刘灿
房春生
-
机构
吉林大学环境与资源学院
-
出处
《生态环境学报》
CSCD
北大核心
2013年第2期288-292,共5页
-
基金
国家"十二五"科技重大专项项目(2012ZX07208)
-
文摘
于2011年在长春市的8个大气环境自动检测站上采集了采暖期和非采暖期的PM10受体样品,并针对市区内PM10的主要污染源道路尘、城市综合扬尘、土壤风沙尘、建筑尘、工业燃煤尘和机动车尾气尘等采集了PM10源样品。对源和受体样品中所含无机元素进行了分析测定,使用以化学质量平衡模型(CMB)为基础的二重源解析技术及其改进方法对长春市大气环境中PM10进行二重源解析研究。结果表明:改进后的二重源解析技术易于确定对PM10贡献大的各单一尘源,能更好的反映城市大气中PM10的主要来源,为制定长春市大气污染治理方案及重点污染源防治提供科学的技术支撑。
-
关键词
PM10
CMB模型
二重源解析技术
长春市
-
Keywords
PM10
chemical mass balance
amending method of improved source apportionment technique
Changchun
-
分类号
X51
[环境科学与工程—环境工程]
-
-
题名中国近海大气颗粒物来源解析研究进展
被引量:7
- 2
-
-
作者
邢建伟
宋金明
-
机构
中国科学院海洋生态与环境科学重点实验室(中国科学院海洋研究所)
青岛海洋科学与技术试点国家实验室海洋生态与环境科学功能实验室
中国科学院大学
中国科学院海洋大科学研究中心
-
出处
《环境化学》
CAS
CSCD
北大核心
2023年第3期942-962,共21页
-
基金
国家自然科学基金(41906035)
山东省自然科学基金(ZR2019BD068)
+1 种基金
青岛海洋国家实验室海洋生态与环境科学功能实验室青年人才培育项目(LMEES-YTSP-2018-01-11)
中国博士后科学基金(2018M630802,2019T120613)资助。
-
文摘
大气颗粒物成分复杂、来源广泛,其通过干湿沉降的方式向海洋的输送是海洋营养物质和一些有害成分的重要来源之一,会对海洋生态系统产生重要影响.大气颗粒物源解析可追溯并量化各类大气成分的排放源信息,为科学防控大气污染和评估海洋大气沉降的生态环境效应提供科学依据.目前的大气颗粒物源解析研究多聚焦城市,对海洋的研究相对不足.本文系统梳理了目前各类源解析方法的发展现状,综述了其在我国海洋大气颗粒物源解析中的应用,并展望了未来的研究方向.结果表明,1)源清单法、源模型法和受体模型三大类技术方法体系在我国海洋大气颗粒物源解析中均有应用,但由于各类方法的适用性和局限性,以因子分析为代表的源未知受体模型得到了最广泛地应用;2)以指示因子法和同位素示踪法为代表的新方法不断涌现,多方法联用源解析技术实现了海洋大气颗粒物来源的准确识别;3)中国近海大气颗粒物的主要来源为化石燃料燃烧、工业排放、生物质燃烧、农业化肥使用、城市垃圾焚烧以及二次生成等的人为源,也有部分来自矿物沙尘、建筑扬尘、海盐飞沫以及生源释放等自然源,其贡献的相对大小与海域位置、陆源输入强度、气象条件以及浮游植物生物量等因素有关.今后应首先从完善源成分谱入手,注重开展多种源解析方法的集成与耦合,研发混合源解析技术模型,开发在线实时快速源解析和二次颗粒物源解析技术,并重点在受人为影响显著的海湾、近岸区域以及生态脆弱区开展精准化大气污染物源解析研究.不断发展适合我国近海的大气颗粒物源解析方法体系,对实现陆海统筹下的海洋生态保护战略目标意义重大.
-
关键词
海洋大气颗粒物
源解析技术
因子分析
正定矩阵因子分解法
同位素示踪
多方法耦合应
用
陆海统筹
-
Keywords
marine atmospheric particulates
source apportionment technique
factor analysis
positive matrix factorization(PMF)
isotopic tracing
multiple methods coupling application
land-sea coordination
-
分类号
X513
[环境科学与工程—环境工程]
-
-
题名表面等离子体无掩膜干涉光刻系统的数值分析(英文)
被引量:5
- 3
-
-
作者
董启明
郭小伟
-
机构
电子科技大学光电信息学院
-
出处
《光子学报》
EI
CAS
CSCD
北大核心
2012年第5期558-564,共7页
-
基金
The National Natural Science Foundation of China(No.60906052)
-
文摘
表面等离子体激元具有近场增强效应,可以代替光子作为曝光源形成纳米级特征尺寸的图像.本文数值分析了棱镜辅助表面等离子体干涉系统的参量空间,并给出了计算原理和方法.结果表明,适当地选择高折射率棱镜、低银层厚度、入射波长和光刻胶折射率,可以获得高曝光度、高对比度的干涉图像.入射波长为431nm时,选择40nm厚的银层,曝光深度可达200nm,条纹周期为110nm.数值分析结果为实验的安排提供了理论支持.
-
关键词
干涉光刻
表面等离子体激元
克莱舒曼结构
-
Keywords
Interference lithography
Surface plasmon plortiton
Kretschmann structureCLCN: TN305.7 Document Code:A Article ID:1004-4213(2012)05-0558-70 IntroductionThere is a growing interest in exploring new nanolithography techniques with high efficiency,low cost and large-area fabrication to fabricate nanoscale devices for nanotechnology applications.Conventional photolithography has remained a useful microfabrication technology because of its ease of repetition and suitability for large-area fabrication[1].The diffraction limit,however,restricts the fabrication scale of photolithography[2].Potential solutions that have actually been pursued require increasingly shorter illumination wavelengths for replicating smaller structures.It is becoming more difficult and complicated to use the short optical wavelengths to reach the desired feature sizes.Other methods such as electron beam lithography[3],ion beam lithography[4],scanning probe lithography[5],nanoimprint lithography(NIL)[6],and evanescent near-field optical lithography(ENFOL)[7] have been developed in order to achieve nanometer-scale features.As we know,the former three techniques need scanning and accordingly are highly inefficient.In NIL,the leveling of the imprint template and the substrate during the printing process,which determines the uniformity of the imprint result,is a challenging issue of this method.ENFOL have the potential to produce subwavelength structures with high efficiency,but it encounters the fact that the evanescent field decays rapidly through the aperture,thus attenuating the transmission intensity at the exit plane and limiting the exposure distance to the scale of a few tens of nanometers from the mask.In recent years,the use of surface-plasmon polaritons(SPPs) instead of photons as an exposure source was rapidly developed to fabricate nanoscale structures.SPPs are characterized by its near field enhancement so that SPP-based lithography can greatly extend exposure depth and improve pattern contrast.Grating-assisted SPP interference,such as SPP resonant interference nanolithography[8] and SPP-assisted interference nanolithography[9],achieved a sub-100nm interference pattern.The techniques,however,are necessary to fabricate a metal grating with a very fine period and only suitable for small-area interference.To avoid the fabrication of the metal grating,a prism-based SPP maskless interference lithography was proposed in 2006,which promises good lithography performance.The approach offers potential to achieve sub-65nm and even sub-32nm feature sizes.However,the structure parameters are always not ideal in a real system.One wants to know how much influence the parameter variations have on the pattern resolution and what variations of the parameters are allowed to obtain an effective interference.Thus,it is necessary to explore the parameter spaces.1 SPP maskless interference lithography systemThe SPP maskless interference lithography system is shown in Fig.1.A p-polarized laser is divided into two beams by a grating splitter,and then goes into the prism-based multilayer system.Under a given condition,the metal film can exhibit collective electron oscillations known as SPPs which are charge density waves that are characterized by intense electromagnetic fields confined to the metallic surface.If the metal layer Fig.1 Schematic for SPP maskless interference lithography systemis sufficiently thin,plasma waves at both metal interfaces are coupled,resulting in symmetric and antisymmetric SPPs.When the thickness h of metal film,dielectric constant ε1,ε2,ε3 of medium above,inside,below the metal film are specified,the coupling equation is shown as followstanh(S2h)(ε1ε3S22+ε22S1S3)+(ε1ε2S2S3+ε2ε3S1S2)=0
-
分类号
TN305.7
[电子电信—物理电子学]
-