目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词...目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词抽取的双向编码器表征法和双向长短时记忆网络的深度学习模型(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory,BERT-BiLSTM)。该模型通过对不正常事件文本进行信息抽取,过滤其中无用信息,并将双向编码器表征法(Bidirectional Encoder Representations from Transformers,BERT)模型输出的特征向量序列作为双向长短时记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)的输入序列,以对空管不正常事件文本风险识别任务进行对比试验。试验结果显示,在风险识别试验中,基于空管专业信息词抽取的BERT-BiLSTM模型相比于通用领域的BERT模型,风险识别准确率提升了3百分点。可以看出该模型有效提升了空管安全信息处理能力,能够有效识别空管部门日常运行中出现的不正常事件所带来的风险,同时可以为空管安全领域信息挖掘相关任务提供基础参考。展开更多
精确估计航班预计到达时刻(estimated time of arrival,ETA)对机场群或终端区协同调度辅助决策制定有重要意义,传统方法对于进场计量节点精细化感知能力不足,特别在高动态环境影响下对大体量复杂航班交通态势难以实现中-长期精准定量估...精确估计航班预计到达时刻(estimated time of arrival,ETA)对机场群或终端区协同调度辅助决策制定有重要意义,传统方法对于进场计量节点精细化感知能力不足,特别在高动态环境影响下对大体量复杂航班交通态势难以实现中-长期精准定量估计。提出了基于误差反馈修正的航班预计到达时刻预测方法,首先,基于航空器性能参数,结合对未飞航路的规划和气象因素,构建航空器运动学模型;其次,通过四维航迹推演对预计到达时刻进行初步预测;然后,构造实际落地时刻(actual time of arrival,ATA)与预测结果的误差序列,采用误差反馈模型对序列进行预测并修正初步预测结果。最后,以重庆江北国际机场进港航班为例进行仿真验证,将提前30 min预测结果在±5 min以内的比率作为评价指标,结果表明相比传统方法,本文方法可在恶劣天气下将预计到达时刻预测的准确率提高25%以上。展开更多
为了提高效率,降低培训成本并推广使用计算机来取代管制模拟机中的飞行员席位,采用集成学习的策略来生成飞行员复诵指令。选用5个大规模预训练语言模型进行微调,并使用K折交叉验证来筛选出性能较好的4个模型作为基础模型来构建集成学习...为了提高效率,降低培训成本并推广使用计算机来取代管制模拟机中的飞行员席位,采用集成学习的策略来生成飞行员复诵指令。选用5个大规模预训练语言模型进行微调,并使用K折交叉验证来筛选出性能较好的4个模型作为基础模型来构建集成学习模型。所构建的集成学习模型在管制指令数据集上取得在本领域中的最优效果。在通用的ROUGE(recall-oriented understudy for gisting evaluation)评价标准中,取得R_(OUGE-1)=0.998,R_(OUGE-2)=0.995,R_(OUGE-L)=0.998的最新效果。其中,R_(OUGE-1)关注参考文本与生成文本之间单个单词的匹配度,R_(OUGE-2)则关注两个连续单词的匹配度,R_(OUGE-L)则关注最长公共子序列的匹配度。为了克服通用指标在本领域的局限性,更准确地评估模型性能,针对生成的复诵指令提出一套基于关键词的评价标准。该评价指标准基于管制文本分词后的结果计算各个关键词指标来评估模型的效果。在基于关键词的评价标准下,所构建模型取得整体准确率为0.987的最优效果,对航空器呼号的复诵准确率达到0.998。展开更多
文摘目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词抽取的双向编码器表征法和双向长短时记忆网络的深度学习模型(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory,BERT-BiLSTM)。该模型通过对不正常事件文本进行信息抽取,过滤其中无用信息,并将双向编码器表征法(Bidirectional Encoder Representations from Transformers,BERT)模型输出的特征向量序列作为双向长短时记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)的输入序列,以对空管不正常事件文本风险识别任务进行对比试验。试验结果显示,在风险识别试验中,基于空管专业信息词抽取的BERT-BiLSTM模型相比于通用领域的BERT模型,风险识别准确率提升了3百分点。可以看出该模型有效提升了空管安全信息处理能力,能够有效识别空管部门日常运行中出现的不正常事件所带来的风险,同时可以为空管安全领域信息挖掘相关任务提供基础参考。
文摘由于具有高时间分辨率、无创性,脑电(Electroencephalogram,EEG)信号被广泛应用于航空航天任务操作员的疲劳、脑力负荷分析等。针对EEG信号多通道且各通道内信息不完全相同的特性,提出了一种基于最小冗余最大相关性(Minimum redundancy maximum relevance,mRMR)算法的EEG特征评价技术。通过设置目标变量,计算各通道内EEG特征与目标变量的互信息量、特征在通道内部的冗余度,可对EEG特征的性能做出评价。进一步,获取管制员在不同脑力负荷下的EEG数据,对一系列EEG特征做出评价并与已有研究、特征在不同分类方式下的可分性进行对比,验证了该特征评价技术的有效性。与现有的技术相比,该技术避免了灰色关联分析法确定权重参数和灰色关联度的主观性、避免了分类器评价法的差异性。相较于已有的特征选择算法,考虑了通道内部信息的冗余,使得评价结果更为准确。相较于基于统计学的相关技术,该方法可对特征的性能做出定量的评价,以便对不同指标进行比较。最后,阐述了该评价方式疲劳程度分析、情绪识别等方面的应用。
文摘精确估计航班预计到达时刻(estimated time of arrival,ETA)对机场群或终端区协同调度辅助决策制定有重要意义,传统方法对于进场计量节点精细化感知能力不足,特别在高动态环境影响下对大体量复杂航班交通态势难以实现中-长期精准定量估计。提出了基于误差反馈修正的航班预计到达时刻预测方法,首先,基于航空器性能参数,结合对未飞航路的规划和气象因素,构建航空器运动学模型;其次,通过四维航迹推演对预计到达时刻进行初步预测;然后,构造实际落地时刻(actual time of arrival,ATA)与预测结果的误差序列,采用误差反馈模型对序列进行预测并修正初步预测结果。最后,以重庆江北国际机场进港航班为例进行仿真验证,将提前30 min预测结果在±5 min以内的比率作为评价指标,结果表明相比传统方法,本文方法可在恶劣天气下将预计到达时刻预测的准确率提高25%以上。
文摘为了提高效率,降低培训成本并推广使用计算机来取代管制模拟机中的飞行员席位,采用集成学习的策略来生成飞行员复诵指令。选用5个大规模预训练语言模型进行微调,并使用K折交叉验证来筛选出性能较好的4个模型作为基础模型来构建集成学习模型。所构建的集成学习模型在管制指令数据集上取得在本领域中的最优效果。在通用的ROUGE(recall-oriented understudy for gisting evaluation)评价标准中,取得R_(OUGE-1)=0.998,R_(OUGE-2)=0.995,R_(OUGE-L)=0.998的最新效果。其中,R_(OUGE-1)关注参考文本与生成文本之间单个单词的匹配度,R_(OUGE-2)则关注两个连续单词的匹配度,R_(OUGE-L)则关注最长公共子序列的匹配度。为了克服通用指标在本领域的局限性,更准确地评估模型性能,针对生成的复诵指令提出一套基于关键词的评价标准。该评价指标准基于管制文本分词后的结果计算各个关键词指标来评估模型的效果。在基于关键词的评价标准下,所构建模型取得整体准确率为0.987的最优效果,对航空器呼号的复诵准确率达到0.998。