为应对大规模分布式光伏(photovoltaic,PV)接入引起的主动配电网电压越限问题,降低控制策略的时序复杂性,提出一种考虑节点功率储备与节点影响力(global importance of each node,GIN)的主动配电网动态集群电压控制方法。首先,通过考虑...为应对大规模分布式光伏(photovoltaic,PV)接入引起的主动配电网电压越限问题,降低控制策略的时序复杂性,提出一种考虑节点功率储备与节点影响力(global importance of each node,GIN)的主动配电网动态集群电压控制方法。首先,通过考虑系统各节点的功率储备度,定义聚类算法的电压灵敏度-功率储备度(voltage sensitivity-power reserve,VS-PR)综合电气距离量度。进而,以GIN算法改进亲和力传播(affinity propagation,AP)聚类算法,实现网络集群划分与主导节点选取。然后,建立主动配电网集群电压控制模型,并通过动态粒子群算法(dynamic particle swarm optimization,D-PSO)进行模型求解。最后,通过建立基于MATLAB 2021b平台的IEEE 33节点仿真算例对比分析,验证了所提动态集群划分与电压控制方法的正确性和有效性。展开更多
基础设施即服务(infrastructure as a service,IaaS)模式"云训练"是基于IaaS云计算提出的武器装备系统模拟训练的模式,根据用户需求对训练资源进行预测调度是提高训练效果的重要保证。分析了"云训练"中用户任务、...基础设施即服务(infrastructure as a service,IaaS)模式"云训练"是基于IaaS云计算提出的武器装备系统模拟训练的模式,根据用户需求对训练资源进行预测调度是提高训练效果的重要保证。分析了"云训练"中用户任务、资源需求特点,采用阈值法进行预处理,通过动态权值系综模型得到预处理结果。在此基础上,提出基于减法-模糊聚类的模糊神经网络的资源需求预测方法(subtractive-fuzzy clustering based fuzzy neural network,SFCFNN),并引入自适应学习率和动量项以提升收敛速度和稳定性。调度器根据预测结果实现用户需求与资源之间的动态匹配。实验表明该方法可精确预测用户资源需求,实现资源动态调度,有效提高资源利用率与训练效果。展开更多
文摘基础设施即服务(infrastructure as a service,IaaS)模式"云训练"是基于IaaS云计算提出的武器装备系统模拟训练的模式,根据用户需求对训练资源进行预测调度是提高训练效果的重要保证。分析了"云训练"中用户任务、资源需求特点,采用阈值法进行预处理,通过动态权值系综模型得到预处理结果。在此基础上,提出基于减法-模糊聚类的模糊神经网络的资源需求预测方法(subtractive-fuzzy clustering based fuzzy neural network,SFCFNN),并引入自适应学习率和动量项以提升收敛速度和稳定性。调度器根据预测结果实现用户需求与资源之间的动态匹配。实验表明该方法可精确预测用户资源需求,实现资源动态调度,有效提高资源利用率与训练效果。