Tire slip angle has a great influence on peak values of both logitudinal and lateral adhesion coefficients as well as optimal slip ratios. Regression equations based on the experi- mental data from several countries...Tire slip angle has a great influence on peak values of both logitudinal and lateral adhesion coefficients as well as optimal slip ratios. Regression equations based on the experi- mental data from several countries are given to describe their dependencies. The peak value of longitudiinal adhesion coefficient has a linear relationship with tire slip angle, but peak value of lateral has a complicated relationship; the optimal slip ratio of longitudinal has an exponent function relationship, the optimal slip ratio of lateral almost has nothinng to do with tire slipangle.展开更多
Mathematical models of tire-lateral mad adhesion for use in mad vehicle dynamics studies are set up to express the relations of adhesion coefficients with slip ratio in lateral direction.The models of tire-lateral mad...Mathematical models of tire-lateral mad adhesion for use in mad vehicle dynamics studies are set up to express the relations of adhesion coefficients with slip ratio in lateral direction.The models of tire-lateral mad adhesion revolutionize the Pacejka's model in concept and therefore make it possible for applications in vehicle dynamics studies by the expression of lateral adhesion coefficient as a function of wheel slip ratio,instead of the wheel slip angle,taking into account in the mean time the influences of mad surface condition, vehicle velocity,vertical load,tire slip angle,and wheel camber angle.展开更多
The fundamental principle of road identification by using angular acceleration of driving wheels was demonstrated in this paper. Based on the analysis of energy conversion and parameters variation during the vehicle d...The fundamental principle of road identification by using angular acceleration of driving wheels was demonstrated in this paper. Based on the analysis of energy conversion and parameters variation during the vehicle drive slip process, the change of adhesion coefficient relative to the an- gular acceleration were theoretically studied experimentally validated. The variation shows that the change of adhesion coefficient relative to the angular acceleration and the change of slip ratio in the drive slip process have same trend-both of them exist an only optimal angular acceleration corre- sponding to the peak value of adhesion coefficient. The peak adhesion coefficient of the prototype vehicle is about 0. 14 on the ice-covered road surfaces, with the corresponding optimal angular accel- eration of about 23.5 rad/s2 and optimal slip ratio of about 9. 4%.展开更多
文摘Tire slip angle has a great influence on peak values of both logitudinal and lateral adhesion coefficients as well as optimal slip ratios. Regression equations based on the experi- mental data from several countries are given to describe their dependencies. The peak value of longitudiinal adhesion coefficient has a linear relationship with tire slip angle, but peak value of lateral has a complicated relationship; the optimal slip ratio of longitudinal has an exponent function relationship, the optimal slip ratio of lateral almost has nothinng to do with tire slipangle.
文摘Mathematical models of tire-lateral mad adhesion for use in mad vehicle dynamics studies are set up to express the relations of adhesion coefficients with slip ratio in lateral direction.The models of tire-lateral mad adhesion revolutionize the Pacejka's model in concept and therefore make it possible for applications in vehicle dynamics studies by the expression of lateral adhesion coefficient as a function of wheel slip ratio,instead of the wheel slip angle,taking into account in the mean time the influences of mad surface condition, vehicle velocity,vertical load,tire slip angle,and wheel camber angle.
基金Supported by the National"Eleventh Five"Project of China(40401040302)
文摘The fundamental principle of road identification by using angular acceleration of driving wheels was demonstrated in this paper. Based on the analysis of energy conversion and parameters variation during the vehicle drive slip process, the change of adhesion coefficient relative to the an- gular acceleration were theoretically studied experimentally validated. The variation shows that the change of adhesion coefficient relative to the angular acceleration and the change of slip ratio in the drive slip process have same trend-both of them exist an only optimal angular acceleration corre- sponding to the peak value of adhesion coefficient. The peak adhesion coefficient of the prototype vehicle is about 0. 14 on the ice-covered road surfaces, with the corresponding optimal angular accel- eration of about 23.5 rad/s2 and optimal slip ratio of about 9. 4%.