自适应光正交频分复用符号分解串行传输(Adaptive Optical Orthogonal Frequency Division Multiplexing Symbol Decomposition with Serial Transmission,O-OFDM-ASDST)可以抑制O-OFDM系统非线性失真,但在接收端将分解符号合并时会增...自适应光正交频分复用符号分解串行传输(Adaptive Optical Orthogonal Frequency Division Multiplexing Symbol Decomposition with Serial Transmission,O-OFDM-ASDST)可以抑制O-OFDM系统非线性失真,但在接收端将分解符号合并时会增大加性高斯白噪声(Additive White Gaussian Noise,AWGN),因此设计一种能够抑制AWGN的新型接收机.分析了O-OFDM分解符号的结构特征和可观测到的AWGN的最大偏移分量,基于此对接收分解符号进行预处理,尽可能恢复出原本等于限幅门限和零值的时域抽样值,再根据O-OFDM分解符号特征,重构接收分解符号.最后采用蒙特卡洛(Monte Carlo)误码率仿真方法,验证了接收机的有效性.展开更多
In this paper, we propose a new method to derive a family of regular rate-compatible low-density parity-check(RC-LDPC) convolutional codes from RC-LDPC block codes. In the RC-LDPC convolutional family, each extended...In this paper, we propose a new method to derive a family of regular rate-compatible low-density parity-check(RC-LDPC) convolutional codes from RC-LDPC block codes. In the RC-LDPC convolutional family, each extended sub-matrix of each extended code is obtained by choosing specified elements from two fixed matrices HE1K and HE1K, which are derived by modifying the extended matrices HE1 and HE2 of a systematic RC-LDPC block code. The proposed method which is based on graph extension simplifies the design, and prevent the defects caused by the puncturing method. It can be used to generate both regular and irregular RC-LDPC convolutional codes. All resulted codes in the family are systematic which simplify the encoder structure and have maximum encoding memories which ensure the property. Simulation results show the family collectively offer a steady improvement in performance with code compatibility over binary-input additive white Gaussian noise channel(BI-AWGNC).展开更多
文摘自适应光正交频分复用符号分解串行传输(Adaptive Optical Orthogonal Frequency Division Multiplexing Symbol Decomposition with Serial Transmission,O-OFDM-ASDST)可以抑制O-OFDM系统非线性失真,但在接收端将分解符号合并时会增大加性高斯白噪声(Additive White Gaussian Noise,AWGN),因此设计一种能够抑制AWGN的新型接收机.分析了O-OFDM分解符号的结构特征和可观测到的AWGN的最大偏移分量,基于此对接收分解符号进行预处理,尽可能恢复出原本等于限幅门限和零值的时域抽样值,再根据O-OFDM分解符号特征,重构接收分解符号.最后采用蒙特卡洛(Monte Carlo)误码率仿真方法,验证了接收机的有效性.
基金supported by the National Natural Science Foundation of China(No.61401164,No.61201145,No.61471175)the Natural Science Foundation of Guangdong Province of China(No.2014A030310308)the Supporting Plan for New Century Excellent Talents of the Ministry of Education(No.NCET-13-0805)
文摘In this paper, we propose a new method to derive a family of regular rate-compatible low-density parity-check(RC-LDPC) convolutional codes from RC-LDPC block codes. In the RC-LDPC convolutional family, each extended sub-matrix of each extended code is obtained by choosing specified elements from two fixed matrices HE1K and HE1K, which are derived by modifying the extended matrices HE1 and HE2 of a systematic RC-LDPC block code. The proposed method which is based on graph extension simplifies the design, and prevent the defects caused by the puncturing method. It can be used to generate both regular and irregular RC-LDPC convolutional codes. All resulted codes in the family are systematic which simplify the encoder structure and have maximum encoding memories which ensure the property. Simulation results show the family collectively offer a steady improvement in performance with code compatibility over binary-input additive white Gaussian noise channel(BI-AWGNC).