Designing a fuzzy inference system(FIS)from data can be divided into two main phases:structure identification and parameter optimization.First,starting from a simple initial topology,the membership functions and syste...Designing a fuzzy inference system(FIS)from data can be divided into two main phases:structure identification and parameter optimization.First,starting from a simple initial topology,the membership functions and system rules are defined as specific structures.Second,to speed up the convergence of the learning algorithm and lighten the oscillation,an improved descent method for FIS generation is developed.Furthermore, the convergence and the oscillation of the algorithm are system- atically analyzed.Third,using the information obtained from the previous phase,it can be decided in which region of the in- put space the density of fuzzy rules should be enhanced and for which variable the number of fuzzy sets that used to partition the domain must be increased.Consequently,this produces a new and more appropriate structure.Finally,the proposed method is applied to the problem of nonlinear function approximation.展开更多
Based on a presented inference algorithm of fuzzy reasoning, a fuzzy reasoning system is made up. A method of modeling the fuzzy reasoning system, and the setting up of the reasoning knowledge based and reasoning rule...Based on a presented inference algorithm of fuzzy reasoning, a fuzzy reasoning system is made up. A method of modeling the fuzzy reasoning system, and the setting up of the reasoning knowledge based and reasoning rules are studied in this paper. Then a heuristic inference algorithm is presented according to the system.展开更多
In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and...In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed.展开更多
该文基于安全域理论提出一套较完整的区域综合能源系统(regional integrated energy system,RIES)安全预警流程。首先,建立RIES安全域模型并给出RIES安全边界计算方法,包括交流安全边界与直流安全边界。其次,介绍模糊推理与模糊综合评...该文基于安全域理论提出一套较完整的区域综合能源系统(regional integrated energy system,RIES)安全预警流程。首先,建立RIES安全域模型并给出RIES安全边界计算方法,包括交流安全边界与直流安全边界。其次,介绍模糊推理与模糊综合评判方法,用于预警中评估越限的严重程度。再次,提出RIES预警方法,能综合考虑系统N-0与N-1安全性从而发出预警或告警信号。该方法包括预警指标选取与评判、安全预警分级、预警原因分析、安全趋势预测等步骤。最后,用算例验证该方法的有效性。可知,该文提出的安全预警方法对于提升RIES的安全管控能力,具有一定应用价值。展开更多
To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two diff...To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods.展开更多
The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail. The nature of these two kinds of fuzzy controllers...The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail. The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.展开更多
基金Supported by National Basic Research Program of China(973 Program)(2007CB714006)
文摘Designing a fuzzy inference system(FIS)from data can be divided into two main phases:structure identification and parameter optimization.First,starting from a simple initial topology,the membership functions and system rules are defined as specific structures.Second,to speed up the convergence of the learning algorithm and lighten the oscillation,an improved descent method for FIS generation is developed.Furthermore, the convergence and the oscillation of the algorithm are system- atically analyzed.Third,using the information obtained from the previous phase,it can be decided in which region of the in- put space the density of fuzzy rules should be enhanced and for which variable the number of fuzzy sets that used to partition the domain must be increased.Consequently,this produces a new and more appropriate structure.Finally,the proposed method is applied to the problem of nonlinear function approximation.
文摘Based on a presented inference algorithm of fuzzy reasoning, a fuzzy reasoning system is made up. A method of modeling the fuzzy reasoning system, and the setting up of the reasoning knowledge based and reasoning rules are studied in this paper. Then a heuristic inference algorithm is presented according to the system.
文摘In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed.
文摘该文基于安全域理论提出一套较完整的区域综合能源系统(regional integrated energy system,RIES)安全预警流程。首先,建立RIES安全域模型并给出RIES安全边界计算方法,包括交流安全边界与直流安全边界。其次,介绍模糊推理与模糊综合评判方法,用于预警中评估越限的严重程度。再次,提出RIES预警方法,能综合考虑系统N-0与N-1安全性从而发出预警或告警信号。该方法包括预警指标选取与评判、安全预警分级、预警原因分析、安全趋势预测等步骤。最后,用算例验证该方法的有效性。可知,该文提出的安全预警方法对于提升RIES的安全管控能力,具有一定应用价值。
基金supported by the National Natural Science Foundation of China (60902055)
文摘To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods.
基金This project was supported by the fundation of the Academy of Finland (201353)
文摘The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail. The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.