期刊文献+
共找到852篇文章
< 1 2 43 >
每页显示 20 50 100
A sparse moving array imaging approach for FMCW radar with dualaperture adaptive azimuth ambiguity suppression and adaptive QR decomposition
1
作者 Yanwen Han Xiaopeng Yan +3 位作者 Jiawei Wang Sheng Zheng Hongrui Yu Jian Dai 《Defence Technology(防务技术)》 2025年第8期254-271,共18页
Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the phy... Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the physical array aperture,azimuth ambiguity occurs,making range-azimuth imaging on a moving platform challenging.To address this issue,we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing(DAAP)method for suppressing azimuth ambiguity.This method combines spatial multiple-input multiple-output(MIMO)arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging.In addition,an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation(LRMA)and regularized QR is proposed to preprocess sparse motion array signals.Simulations and experiments show that on a two-transmitter-four-receiver array,the signal-to-noise ratio(SNR)of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB,and the azimuth ambiguity signal ratio(AASR)can be reduced to below-20 dB. 展开更多
关键词 Frequency modulated continuous wave (FMCW) Sparse motion array Range-azimuth imaging Azimuth ambiguity suppression DAAP adaptive QR decomposition
在线阅读 下载PDF
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:9
2
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction Empirical mode decomposition(EMD) Ensemble EMD(EEMD) Complete EEMD with adaptive noise(CEEMDAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
Double adaptive selection strategy for MOEA/D 被引量:2
3
作者 GAO Jiale XING Qinghua +1 位作者 FAN Chengli LIANG Zhibing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期132-143,共12页
Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named... Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named double adaptive selection(DAS) strategy. Firstly, some experiments about the operator search ability are given and the performance of operators with different donate vectors is analyzed. Then, DAS is presented by inducing the upper confidence bound strategy, which chooses suitable combination of operators and donates sets to optimize solutions without prior knowledge. Finally, the DAS is used under the framework of the multi-objective evolutionary algorithm based on decomposition, and the multi-objective evolutionary algorithm based on DAS(MOEA/D-DAS) is compared to state-of-the-art MOEAs. Simulation results validate that the MOEA/D-DAS could select the suitable combination of operators and donate sets to optimize problems and the proposed algorithm has better convergence and distribution. 展开更多
关键词 MULTI-OBJECTIVE optimization adaptive OPERATOR SELECTION adaptive NEIGHBOR SELECTION decomposition.
在线阅读 下载PDF
Parametric adaptive time-frequency representation based on time-sheared Gabor atoms 被引量:2
4
作者 Ma Shiwei Zhu Xiaojin Chen Guanghua Wang Jian Cao Jialin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期1-7,共7页
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ... A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing. 展开更多
关键词 Time-frequency analysis Gabor atom Time-shear adaptive signal decomposition Time-frequency distribution.
在线阅读 下载PDF
融合二次分解的深度学习模型在PM_(2.5)浓度预测中的应用 被引量:2
5
作者 江雨燕 黄体臣 +1 位作者 甘如美江 王付宇 《安全与环境学报》 北大核心 2025年第1期296-309,共14页
针对PM_(2.5)质量浓度时间序列呈非线性难以预测的特征,为了进一步提高PM_(2.5)质量浓度预测精确度,研究通过“分而治之”先分解再预测的思想,提出一种融合二次分解的PM_(2.5)质量浓度混合预测模型(Complete Ensemble Empirical Mode De... 针对PM_(2.5)质量浓度时间序列呈非线性难以预测的特征,为了进一步提高PM_(2.5)质量浓度预测精确度,研究通过“分而治之”先分解再预测的思想,提出一种融合二次分解的PM_(2.5)质量浓度混合预测模型(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise-Variational Mode Decomposition-Temporal Convolutional Network-Bi-directional Long Short-Term Memory,CEEMDAN-VMD-TCN-BiLSTM)。该模型先由递归特征消除(Recursive Feature Elimination,RFE)进行特征筛选,随后使用自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)将2013—2016年北京市PM_(2.5)质量浓度序列分解为一系列高低频模态分量并计算各分量样本熵,将样本熵由K-means聚类整合为新的分量,再由变分模态分解(Variational Mode Decomposition,VMD)方法进行二次分解。最后,将所有分量先经时间卷积网络(Temporal Convolutional Network,TCN)进行特征提取,并通过双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)预测,叠加各分量预测值即为最终预测结果。消融试验结果显示,该模型相比于单次CEEMDAN分解模型均方根误差E_(MAPE)降低19.312%,绝对误差E_(MAE)降低34.423%,百分比误差E_(MAPE)与希尔不等系数E_(TIC)分别减少40.465百分点和59.794%。由此可见,研究在引入VMD构成二次分解模型相比于单次分解模型的预测误差更小,精度更高,可为决策者在PM_(2.5)质量浓度预测与治理等工作提供一定参考。 展开更多
关键词 环境工程学 PM_(2.5)质量浓度预测 自适应噪声的完备经验模态分解 变分模态分解 时间卷积网络 双向长短期记忆网络
在线阅读 下载PDF
基于AFMD和SVDD的风电机组变桨轴承损伤识别
6
作者 王晓龙 张博文 +3 位作者 金韩微 付锐棋 杨秀彬 吴鹏 《太阳能学报》 北大核心 2025年第3期514-523,共10页
针对风电机组变桨轴承损伤识别问题,提出基于自适应特征模态分解和奇异值分解降噪的损伤识别方法。该方法首先利用龙格库塔优化策略对特征模态分解算法中的频带数量及滤波器长度参数进行搜索,确定最优参数组合后对原始振动信号进行自适... 针对风电机组变桨轴承损伤识别问题,提出基于自适应特征模态分解和奇异值分解降噪的损伤识别方法。该方法首先利用龙格库塔优化策略对特征模态分解算法中的频带数量及滤波器长度参数进行搜索,确定最优参数组合后对原始振动信号进行自适应特征模态分解,从中提取出蕴含丰富特征信息的模态分量;继而计算出所提取模态分量的包络信号并做进一步奇异值分解降噪处理,从而增强包络信号的信噪比;最后对比理论损伤特征频率及包络谱中幅值突出的频率成分,用于判断变桨轴承的故障损伤。实验数据分析结果表明,所提方法能从复杂原始振动信号中有效提取出微弱特征信息,实现变桨轴承损伤部位的准确甄别,具有一定工程参考借鉴价值。 展开更多
关键词 风电机组 变桨轴承 损伤识别 自适应特征模态分解 奇异值分解降噪
在线阅读 下载PDF
多目标进化算法的改进在齿轮减速器中的应用
7
作者 高淑芝 任学鹏 张义民 《机械设计与制造》 北大核心 2025年第4期190-193,197,共5页
分解的多目标算法是利用一组权重向量将一个多目标优化问题分解为一组标量子问题。针对当帕累托前沿是一个多峰和断裂等其他较复杂的情况下,均匀分布的权重向量往往收敛效果较差的问题,提出了一种种群分区管理的自适应方法用来保持种群... 分解的多目标算法是利用一组权重向量将一个多目标优化问题分解为一组标量子问题。针对当帕累托前沿是一个多峰和断裂等其他较复杂的情况下,均匀分布的权重向量往往收敛效果较差的问题,提出了一种种群分区管理的自适应方法用来保持种群的多样性与收敛性之间的平衡。首先,采用了一种均匀随机的权重向量生成方式进行初始化;其次,采用Tchebycheff分解方法进行子代的更新;再次,将提出的自适应方法对分解的多目标进化算法进行了改进;最后,通过在标准测试函数和齿轮减速器的优化仿真,证明了提出的算法的有效性。 展开更多
关键词 多目标优化 分解算法 自适应 进化算法应用
在线阅读 下载PDF
基于RIME-IAOA的混合模型短期光伏功率预测 被引量:1
8
作者 王仁明 魏逸明 席磊 《三峡大学学报(自然科学版)》 CAS 北大核心 2025年第1期81-88,共8页
光伏发电在如今的新能源发展中逐渐成为重点,其中光伏功率预测成为研究的主要方向.为了提升光伏功率预测的精度和效率,提出了RIME-VMD-IAOA-LSTM模型.该模型通过霜冰优化算法(RIME)优化变分模态分解(VMD)的参数来提升分解效率;引入余弦... 光伏发电在如今的新能源发展中逐渐成为重点,其中光伏功率预测成为研究的主要方向.为了提升光伏功率预测的精度和效率,提出了RIME-VMD-IAOA-LSTM模型.该模型通过霜冰优化算法(RIME)优化变分模态分解(VMD)的参数来提升分解效率;引入余弦控制因子的动态边界策略来控制算数优化算法(AOA)数值的增长速率从而提升算法的精度和稳定性;利用自适应T分布变异策略来改进AOA的局部搜索能力和全局开发能力,更好地避免局部最优解.两种智能优化算法的加入使得整体模型的预测效率和速度都有很大提升,实验结果表明组合模型RIMEVMD-IAOA-LSTM相比于其他预测模型有较高的光伏功率预测精度. 展开更多
关键词 霜冰优化算法 变分模态分解 算术优化算法 余弦控制因子策略 自适应T分布策略 短期光伏功率预测
在线阅读 下载PDF
基于二次CEEMDAN与CCJC的滚动轴承故障冲击特征提取 被引量:1
9
作者 张亢 曹振华 +2 位作者 刘鹏飞 陈向民 牛晓瑞 《噪声与振动控制》 北大核心 2025年第1期112-118,247,共8页
滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEM... 滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)良好的非平稳非线性数据处理能力,首先将原始轴承振动信号中的各种成分予以分离,在此基础上,提出相关系数跳变准则(Correlation Coefficient Jump Criterion,CCJC)区别以故障周期性冲击成分为主的分量,以及以噪声和转频成分为主的分量,并通过二次分解二次重构的方式,最大限度去除噪声与转频相关成分,最终得到提纯的滚动轴承故障周期性冲击信号。通过对滚动轴承故障仿真信号和基准数据的分析,表明所提方法可以准确高效提取轴承故障周期性冲击成分;对滚动轴承实验振动信号进行分析,并与经典方法对比,验证所提方法的优势及其良好的工程应用前景。 展开更多
关键词 故障诊断 滚动轴承 振动信号 周期性冲击特征 自适应噪声完全集合经验模态分解 相关系数跳变准则
在线阅读 下载PDF
桥梁监测信号自适应分解重构方法对比分析
10
作者 单德山 余忠儒 +1 位作者 孙榕徽 张二华 《振动工程学报》 北大核心 2025年第5期1036-1045,共10页
桥梁结构监测信号的自适应分解重构与降噪是桥梁健康监测领域的重要研究内容。为提供快捷有效的信号时频域降噪方法,针对VMD(variational mode decomposition)类处理方法存在的分解成分数量需预先确定的缺点,提出了一种自适应变分模态... 桥梁结构监测信号的自适应分解重构与降噪是桥梁健康监测领域的重要研究内容。为提供快捷有效的信号时频域降噪方法,针对VMD(variational mode decomposition)类处理方法存在的分解成分数量需预先确定的缺点,提出了一种自适应变分模态分解重构(adaptive variational mode decomposition and reconstruction,AVMDR)方法来执行信号降噪。通过引入EMD(empirical mode decomposition)来自适应确定分解成分数量,然后利用多尺度主成分分析对各阶成分进行降噪并重构。利用带有不同噪声水平的线性平稳、非线性非平稳模拟信号以及2座斜拉桥模型实测信号对所提方法的降噪性能进行了验证和对比分析。研究结果表明:AVMDR方法的降噪性能优于其他常用方法,各个降噪性能评价指标均为最优,且AVMDR方法在剔除噪声的同时能够更多地保留结构信息。 展开更多
关键词 监测信号 分解重构 自适应 降噪 评价指标
在线阅读 下载PDF
基于CEEMDAN与自适应双阈值小波分析的心音去噪
11
作者 卢官明 唐瑭 +2 位作者 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第4期36-47,共12页
针对现有基于经验模态分解的心音去噪算法在进行模态分解后存在心脏杂音与噪声模态混叠的问题,提出了一种基于自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)与自适应... 针对现有基于经验模态分解的心音去噪算法在进行模态分解后存在心脏杂音与噪声模态混叠的问题,提出了一种基于自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)与自适应双阈值小波分析的心音去噪算法。首先,通过CEEMDAN方法,将含噪心音信号分解为不同时间尺度上的固有模态函数(Intrinsic Mode Function,IMF)分量;然后,采用去趋势波动分析(Detrended Fluctuation Analysis,DFA)方法将不同的IMF分量判定为含噪的心脏杂音IMF分量或心音IMF分量;接着,利用小波分析技术,滤除含噪心脏杂音IMF分量中的噪声,保留含有病理特征的心脏杂音;最后,将保留下来的心脏杂音与心音IMF分量进行重构,得到去噪后的心音信号。在Khan数据集上的实验结果表明,在不同噪声强度下,所提出的心音去噪算法均能明显提高心音信号的信噪比,降低均方根误差,优于其他现有方法。对临床采集的新生儿心音信号进行去噪的实验结果表明,所提算法具有良好的抑制噪声能力,并保留了含有病理特征的心脏杂音。 展开更多
关键词 心音去噪 自适应噪声完全集合经验模态分解 去趋势波动分析 小波分析 心脏杂音
在线阅读 下载PDF
基于AVMD与Teager能量算子的风电机组故障诊断方法
12
作者 时培明 伊思颖 +2 位作者 张慧超 范雅斐 韩东颖 《振动.测试与诊断》 北大核心 2025年第2期390-397,418,共9页
为解决变分模态分解(variational mode decomposition,简称VMD)在噪声情况下提取风电机组故障特征时因参数设置的人为经验不足而带来的误差问题及耗费时间的问题,提出一种基于自适应变分模态分解(adaptive variational mode decompositi... 为解决变分模态分解(variational mode decomposition,简称VMD)在噪声情况下提取风电机组故障特征时因参数设置的人为经验不足而带来的误差问题及耗费时间的问题,提出一种基于自适应变分模态分解(adaptive variational mode decomposition,简称AVMD)算法的风电机组故障诊断方法。首先,将包络熵-峭度-互信息准则(envelope entropy,kurtosis and mutual information,简称EKM)作为黏菌算法(slime mold algorithm,简称SMA)的适应度函数来寻找最优解,并按照最优解对故障信号进行分解;其次,计算每个固有模态函数分量(inherent modal function,简称IMF)的峭度和与原信号的互信息,选择具有故障特征的分量进行重构;最后,通过Teager能量算子解调来识别风电机组故障特征频率。仿真信号和实际风电机组故障信号表明,所提方法能够找到故障频率及其倍频,验证了其在风电机组故障诊断领域中的有效性。 展开更多
关键词 自适应变分模态分解 黏菌算法 包络熵-峭度-互信息准则 TEAGER能量算子
在线阅读 下载PDF
多任务分解与自适应色彩均衡融合下的敦煌壁画色彩增强
13
作者 邬开俊 单宏全 +2 位作者 魏赟 田彬 王璐璐 《电子科技大学学报》 北大核心 2025年第3期384-392,共9页
针对壁画图像在拍摄过程中存在的环境光色辐射以及由于年代原因形成的色彩退化等问题,提出了多任务分解与自适应色彩均衡融合下的敦煌壁画色彩恢复增强算法。该算法通过分析壁画图像存在的问题,对问题进行任务分解,首先对壁画各通道信... 针对壁画图像在拍摄过程中存在的环境光色辐射以及由于年代原因形成的色彩退化等问题,提出了多任务分解与自适应色彩均衡融合下的敦煌壁画色彩恢复增强算法。该算法通过分析壁画图像存在的问题,对问题进行任务分解,首先对壁画各通道信息提取暗通道信息并进行纹理和细节增强,同时为避免增强后原始壁画上存在的脏点影响色彩增强效果,又对其进行局部滤波处理,并配合自适应色彩均衡模型,使输出壁画不仅在色彩上有了较好地提升,纹理信息也更加丰富。随后采用融合算法,融合自适应色彩均衡与滤波后的结果,使壁画细节及色彩信息更加丰富,壁画图像对比度、能量值以及相关性均得到提升。 展开更多
关键词 敦煌壁画 双向滤波 多任务分解 自适应色彩均衡 通道分离 色彩增强
在线阅读 下载PDF
结合图像分解和自稀疏模糊聚类的情感颜色迁移
14
作者 谢斌 李燕伟 +2 位作者 杨舒敏 徐燕 王冠超 《计算机工程与科学》 北大核心 2025年第3期513-523,共11页
针对传统情感颜色迁移方法存在层次感欠缺、细节模糊和视觉效果不佳等问题,结合图像分解和自稀疏模糊聚类提出了一种新的迁移方法。首先,为了更好地维持图像的细节,引入基于低秩纹理先验的卡通纹理分解将源图像分为包含主要颜色的平滑... 针对传统情感颜色迁移方法存在层次感欠缺、细节模糊和视觉效果不佳等问题,结合图像分解和自稀疏模糊聚类提出了一种新的迁移方法。首先,为了更好地维持图像的细节,引入基于低秩纹理先验的卡通纹理分解将源图像分为包含主要颜色的平滑图和包含局部信息的纹理图。其次,利用自稀疏模糊聚类方法得到平滑图的主要代表性颜色和其对应的分割区域,让图像在提取过程中更好地保留源图像的层次结构。最后,设计了一种自适应亮度修正的防溢出策略,并在此基础上提出了一种新的情感颜色迁移方法,旨在使结果图像更加符合人眼的视觉识别特性。实验结果表明,所提出的方法得到了质量更高的迁移结果图像,且在主客观评价方面都表现更优。 展开更多
关键词 情感颜色迁移 自稀疏模糊聚类 图像分解 自适应亮度修正 平滑图
在线阅读 下载PDF
基于反行波波前瞬时能量谱的深远海风电经柔直并网系统的双端行波故障测距方法
15
作者 刘乐 陈旭明 +5 位作者 康小宁 马晓伟 李诗闯 赵勃扬 李昕盈 刘鑫 《电力自动化设备》 北大核心 2025年第3期86-94,共9页
现有的行波测距方法的精确性和可靠性受到保护采样频率、强噪声干扰、短故障距离、高过渡电阻等因素的严重影响,对此提出一种基于小波自适应阈值降噪(AWTD)和结合变分模态分解(VMD)的Hilbert变换的双端行波故障测距方法。利用AWTD算法... 现有的行波测距方法的精确性和可靠性受到保护采样频率、强噪声干扰、短故障距离、高过渡电阻等因素的严重影响,对此提出一种基于小波自适应阈值降噪(AWTD)和结合变分模态分解(VMD)的Hilbert变换的双端行波故障测距方法。利用AWTD算法对故障反行波数据进行降噪预处理。通过VMD算法提取蕴含故障距离信息的高频本征模态函数。利用Hilbert变换获得第5层本征模态函数的瞬时能量谱,并通过瞬时能量谱的最大值实现对线路两端反行波波头的标定,得到行波抵达保护测量点的精确时间,从而结合线路两端行波波速度预测故障距离。在PSCAD/EMTDC与RTDS仿真平台中搭建双端与三端典型深远海风电并网模型进行大量测试,结果表明,所提测距方法不受故障电阻、故障类型的影响,在不同采样频率、近端故障、强噪声干扰与实时仿真环境下,均能实现精准的故障定位,具有一定工程应用价值。 展开更多
关键词 深远海风电 行波故障测距 小波自适应阈值降噪 变分模态分解 HILBERT变换 瞬时能量谱
在线阅读 下载PDF
抵抗低频高能噪声影响的海上风电结构模态参数识别方法研究
16
作者 董霄峰 时泽坤 彭泓浩 《振动与冲击》 北大核心 2025年第9期214-222,265,共10页
模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识... 模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识别方法(CEEMDAN-VMD-SSI,CVS)。首先,利用完全自适应噪声集合经验模态分解法(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)滤除原始信号中的高频噪声;随后,通过麻雀优化算法(sparrow’s optimization algorithm, SSA)以最小包络熵作为适应度函数迭代计算自适应确定变分模态分解法(variational mode decomposition, VMD)的信号分解层数K和惩罚因子α,实现信号的VMD自适应优化分解以剔除低频高能噪声影响;最后,再采用随机子空间方法实现信号中模态参数的识别提取。研究分别针对构造仿真含噪信号和原型观测信号开展了识别效果对比验证。结果表明:相比于传统模态识别方法,CVS方法在信噪比、波形相似系数、相对误差等参数方面具有更好的有效性和精确性;同时,该方法对实测信号的处理能力强,降噪效果好,能够准确识别结构固有频率、叶轮转动频率(1P)和叶片扫掠频率(3P),具有良好的工程适用性,为后续基于实测数据开展海上风电结构模态参数识别与运行安全评价提供了新思路。 展开更多
关键词 海上风电 模态参数识别 低频高能噪声 完全自适应噪声集合经验模态分解(CEEMDAN) 变分模态分解法(VMD)
在线阅读 下载PDF
基于模态分解和误差修正的短期电力负荷预测
17
作者 鄢化彪 李东丽 +2 位作者 黄绿娥 张航菘 姚龙龙 《电子测量技术》 北大核心 2025年第5期92-101,共10页
针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大... 针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大信息系数筛选出与负荷高度相关的特征集,以削弱特征冗余;通过改进的自适应白噪声完全集合经验模态分解将高波动性的负荷分解为频率各异的本征模态分量和残差,以降低非平稳性;引入样本熵将复杂度相近的分量重构成新子序列,以降低计算量;然后,结合并行双向时间卷积网络提取不同尺度的特征,利用双向长短期记忆网络对负荷序列初步预测,使用麻雀优化算法对神经网络超参数调优;最后,误差序列通过误差修正模块对初始预测值进行修正。经实验验证,与其他预测模型相比,RMSE最多降低51.42%,最少降低34.26%,验证了模型的准确性和有效性。 展开更多
关键词 电力负荷 短期预测 自适应经验模态分解 样本熵 双向时间卷积网络 双向长短期记忆 麻雀搜索算法
在线阅读 下载PDF
基于GWO-LMS-RSSD的旋转机械耦合故障分离及特征强化方法
18
作者 许文 施卫华 +3 位作者 李红钢 华如南 刘厚林 董亮 《机电工程》 北大核心 2025年第4期677-685,共9页
针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号... 针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号进行了滤波处理,使故障特征得到了初步强化;然后,根据耦合故障的不同共振属性,利用RSSD算法将故障耦合分解为高共振分量和低共振分量,完成了耦合故障分离;特别地,针对LMS算法中参数依赖人工经验、自适应差等问题,研究了基于灰狼优化算法(GWO)的参数自适应优化方法,设计了以信噪比和均方误差构成的优化目标;最后,对稀疏分解得到的信号进行了包络解调,完成了耦合故障分离及特征强化,同时,利用模拟信号和实验信号对该方法进行了验证分析。研究结果表明:GWO-LMS-RSSD算法能用于有效降低噪声干扰,分离旋转机械耦合故障及强化故障特征。该研究成果可为强噪声干扰下耦合故障的特征分离及强化提供一种新的思路。 展开更多
关键词 耦合故障诊断 旋转机械 共振稀疏分解 自适应滤波最小均方算法 灰狼优化算法 信噪比 均方误差
在线阅读 下载PDF
基于SSA优化的Transformer-BiGRU短期风电功率预测
19
作者 包广斌 杨龙龙 +1 位作者 范超林 李焕 《电子测量技术》 北大核心 2025年第13期139-147,共9页
为提高风电功率预测精度,提出了一种基于SSA优化的Transformer-BiGRU组合模型。首先,采用CEEMDAN将原始序列分解为多个模态分量和残差分量,降低数据复杂性和不稳定性。然后,结合Transformer的自注意力机制与BiGRU的双向时序建模能力,构... 为提高风电功率预测精度,提出了一种基于SSA优化的Transformer-BiGRU组合模型。首先,采用CEEMDAN将原始序列分解为多个模态分量和残差分量,降低数据复杂性和不稳定性。然后,结合Transformer的自注意力机制与BiGRU的双向时序建模能力,构建了一个高效的组合模型。针对Transformer-BiGRU模型超参数优化困难的问题,引入SSA麻雀搜索算法对超参数进行优化,进一步提升预测精度。最后,以龙源电力风电预测数据集为例,通过对比实验和消融实验验证了该模型优于其他传统模型和模型中各组件的有效性,实验结果表明该方法的R 2达到了0.9810。 展开更多
关键词 风电预测 麻雀搜索算法 自适应噪声完备经验模态分解 双向门控循坏单元 自注意力机制
在线阅读 下载PDF
自适应变分模态分解算法在高温高压水空化特性分析中的应用 被引量:1
20
作者 许博 胡鸿飞 王海军 《西安交通大学学报》 EI CAS 北大核心 2025年第1期56-67,共12页
针对高温高压流动工况下,空化状态判断困难、传统分析方法难以有效提取压力脉动信号中的有效信息的问题,以孔板为对象,开展了高温高压水的空化实验,并提出了一种基于遗传算法的自适应变分模态分解(AVMD)算法。该算法通过结合中心频率法... 针对高温高压流动工况下,空化状态判断困难、传统分析方法难以有效提取压力脉动信号中的有效信息的问题,以孔板为对象,开展了高温高压水的空化实验,并提出了一种基于遗传算法的自适应变分模态分解(AVMD)算法。该算法通过结合中心频率法、遗传算法、功率谱熵和相对能量等技术,自适应地确定变分模态分解算法中的超参数并有效去除信号中的噪声成分,提高了空化特征的提取精度。结果表明:AVMD算法能够精确捕捉到高温高压水流经孔板时空化现象的发生和发展,识别空化起始点、转捩点以及空化强度的变化;当高温高压水流经孔板后,压力脉动的无量纲频率在0.04~0.35、压力脉动的无量纲幅值在0.014~0.067时,空化现象开始出现;随着空化强度增加,管内压力脉动幅值和频率整体呈增大趋势;空化起始转捩点及空化严重转捩点与入口压力和工质入口过冷度密切相关。AVMD算法能够有效提高空化特性分析的精度,尤其是在复杂流动条件下的空化预测,为压水堆核电站冷却剂系统和高压蒸汽系统的稳定运行提供理论依据和参考。 展开更多
关键词 高温高压水 空化特性 自适应变分模态分解 孔板
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部