To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method...To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.展开更多
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ...A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.展开更多
In order to improve the threading stability and the head thickness precision in tandem hot rolling process, an adaptive threading strategy was proposed. The proposed strategy was realized by the rolling characteristic...In order to improve the threading stability and the head thickness precision in tandem hot rolling process, an adaptive threading strategy was proposed. The proposed strategy was realized by the rolling characteristics analysis, and factors which affect the rolling force and the final thickness were determined and analyzed based on the influence coefficients calculation process. An objective function consisting of the influenced factors was founded, and the disturbance quantity was obtained by minimizing the function with the Nelder-Mead simplex method, and the proposed adaptive threading strategy was realized based on the calculation results. The adaptive threading strategy has been applied to one 7-stand hot tandem mill successfully, actual statistics data show that the predicted rolling force prediction in the range of +/- 5.0% is improved to 97.8%, the head thickness precision in the range of +/- 35 mu m is improved to 98.5%, and the threading stability and the head thickness precision are enhanced to a high level.展开更多
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-trian...An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) tech-niques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h-adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h-adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.展开更多
The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional ...The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform(IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.展开更多
Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals i...Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.展开更多
This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time...This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.展开更多
Nyquist Folding Receiver(NYFR)is a perceptron structure that realizes a low probability of intercept(LPI)signal analog to information.Aiming at the problem of LPI radar signal receiving,the time domain,frequency domai...Nyquist Folding Receiver(NYFR)is a perceptron structure that realizes a low probability of intercept(LPI)signal analog to information.Aiming at the problem of LPI radar signal receiving,the time domain,frequency domain,and time-frequency domain problems of signals intercepted by NYFR structure are studied.Combined with the time-frequency analysis(TFA)method,a radar recognition scheme based on deep learning(DL)is introduced,which can reliably classify common LPI radar signals.First,the structure of NYFR and its characteristics in the time domain,frequency domain,and time and frequency domain are analyzed.Then,the received signal is then converted into a time-frequency image(TFI).Finally,four kinds of DL algorithms are used to classify LPI radar signals.Simulation results demonstrate the correctness of the NYFR structure,and the effectiveness of the proposed recognition method is verified by comparison experiments.展开更多
An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membe...An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.展开更多
A new type of vocoder system based upon formant analysis is presented in this paper. The LMS adaptive algorithm is used for tracking formants of speech signals. The results of computer simulation show that the new voc...A new type of vocoder system based upon formant analysis is presented in this paper. The LMS adaptive algorithm is used for tracking formants of speech signals. The results of computer simulation show that the new vocoder has better synthesized speech quality.展开更多
In this paper, propagated δ pulses through different distance of plasma are calculated,and their time-frequency characteristics are studied using CWD (Choi-William distribution). It is found that several horizontal s...In this paper, propagated δ pulses through different distance of plasma are calculated,and their time-frequency characteristics are studied using CWD (Choi-William distribution). It is found that several horizontal spectra appear at early arrival time like discrete spectrum, at last time a hyperbolic curve lies in the time-frequency spectrum which corresponds to the frequency-group delay curve of plasma. To understand the time-frequency the property of a signal is helpful for obtaining the plasma parameters.展开更多
With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued no...With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant 52175099)the China Postdoctoral Science Foundation(Grant No.2020M671494)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z179)the Nanjing University of Science and Technology Independent Research Program(Grant No.30920021105)。
文摘To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.
基金This project was supported by the National Natural Science Foundation of China (60472102)Shanghai Leading Academic Discipline Project (T0103).
文摘A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.
基金Project(51504061)supported by the National Natural Science Foundation of China
文摘In order to improve the threading stability and the head thickness precision in tandem hot rolling process, an adaptive threading strategy was proposed. The proposed strategy was realized by the rolling characteristics analysis, and factors which affect the rolling force and the final thickness were determined and analyzed based on the influence coefficients calculation process. An objective function consisting of the influenced factors was founded, and the disturbance quantity was obtained by minimizing the function with the Nelder-Mead simplex method, and the proposed adaptive threading strategy was realized based on the calculation results. The adaptive threading strategy has been applied to one 7-stand hot tandem mill successfully, actual statistics data show that the predicted rolling force prediction in the range of +/- 5.0% is improved to 97.8%, the head thickness precision in the range of +/- 35 mu m is improved to 98.5%, and the threading stability and the head thickness precision are enhanced to a high level.
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.
基金Project supported by the National Natural Science Foundation of China (No.10202018)
文摘An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) tech-niques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h-adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h-adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.
基金supported by the National Natural Science Foundation of China (61871146)the Fundamental Research Funds for the Central Universities (FRFCU5710093720)。
文摘The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform(IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.
基金This project was supported by the National Natural Science Foundation of China (60672034)the Research Fund for the Doctoral Program of Higher Education(20060217021)the Natural Science Foundation of Heilongjiang Province of China (ZJG0606-01)
文摘Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.
基金supported by the National Natural Science Foundation of China(61072120)
文摘This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.
基金supported by the National Defence Pre-research Foundation of China。
文摘Nyquist Folding Receiver(NYFR)is a perceptron structure that realizes a low probability of intercept(LPI)signal analog to information.Aiming at the problem of LPI radar signal receiving,the time domain,frequency domain,and time-frequency domain problems of signals intercepted by NYFR structure are studied.Combined with the time-frequency analysis(TFA)method,a radar recognition scheme based on deep learning(DL)is introduced,which can reliably classify common LPI radar signals.First,the structure of NYFR and its characteristics in the time domain,frequency domain,and time and frequency domain are analyzed.Then,the received signal is then converted into a time-frequency image(TFI).Finally,four kinds of DL algorithms are used to classify LPI radar signals.Simulation results demonstrate the correctness of the NYFR structure,and the effectiveness of the proposed recognition method is verified by comparison experiments.
基金surported by Tianjin Science and Technology Development for Higher Education(20051206).
文摘An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.
文摘A new type of vocoder system based upon formant analysis is presented in this paper. The LMS adaptive algorithm is used for tracking formants of speech signals. The results of computer simulation show that the new vocoder has better synthesized speech quality.
文摘In this paper, propagated δ pulses through different distance of plasma are calculated,and their time-frequency characteristics are studied using CWD (Choi-William distribution). It is found that several horizontal spectra appear at early arrival time like discrete spectrum, at last time a hyperbolic curve lies in the time-frequency spectrum which corresponds to the frequency-group delay curve of plasma. To understand the time-frequency the property of a signal is helpful for obtaining the plasma parameters.
基金supported by the National Natural Science Foundation of China(6100115361271415+4 种基金6140149961531015)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)
文摘With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.