The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove...The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.展开更多
为了解决采用遗传算法解析最优路径中存在的转折点较多、易陷入局部最优解、迭代次数较多以及寻优时间过长等问题,引入自适应交叉算子和变异算子,将改进后的跳点搜索(jump point search)算法与改进遗传算法融合,得到跳点搜索-遗传(jump ...为了解决采用遗传算法解析最优路径中存在的转折点较多、易陷入局部最优解、迭代次数较多以及寻优时间过长等问题,引入自适应交叉算子和变异算子,将改进后的跳点搜索(jump point search)算法与改进遗传算法融合,得到跳点搜索-遗传(jump point search-genetic,JPSG)算法。JPSG算法利用JPS算法的高效局部搜索能力来提高整体搜索能力,加速算法整体收敛趋势;利用改进遗传算法的全局搜索能力改变JPS算法不能在复杂障碍物状况下解析最优路径的状态,提高算法对动态环境的适应性。在栅格矩阵中的路径规划仿真表明,相比于改进遗传算法、传统遗传算法,JPSG算法可以有效缩短寻优执行时间,提高寻优准确率,减少运算执行次数,在稳定性、准确性、快速性上具有明显的优势。展开更多
基金Fundamental Research Funds for the Central Universities(2024JBZX038)National Natural Science F oundation of China(62076023)。
文摘The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.
文摘为了解决采用遗传算法解析最优路径中存在的转折点较多、易陷入局部最优解、迭代次数较多以及寻优时间过长等问题,引入自适应交叉算子和变异算子,将改进后的跳点搜索(jump point search)算法与改进遗传算法融合,得到跳点搜索-遗传(jump point search-genetic,JPSG)算法。JPSG算法利用JPS算法的高效局部搜索能力来提高整体搜索能力,加速算法整体收敛趋势;利用改进遗传算法的全局搜索能力改变JPS算法不能在复杂障碍物状况下解析最优路径的状态,提高算法对动态环境的适应性。在栅格矩阵中的路径规划仿真表明,相比于改进遗传算法、传统遗传算法,JPSG算法可以有效缩短寻优执行时间,提高寻优准确率,减少运算执行次数,在稳定性、准确性、快速性上具有明显的优势。