迈尔斯-布里格斯人格类型指标分类(Myers-Briggs type indicator,MBTI)测验被认为是预测人格类型最热门和最可靠的方法之一,但传统的问卷调查或专业人士咨询的检测方式在实施过程中面临着高昂的人力和时间成本以及潜在的隐私泄露风险。...迈尔斯-布里格斯人格类型指标分类(Myers-Briggs type indicator,MBTI)测验被认为是预测人格类型最热门和最可靠的方法之一,但传统的问卷调查或专业人士咨询的检测方式在实施过程中面临着高昂的人力和时间成本以及潜在的隐私泄露风险。针对这类问题,本文提出一种基于自适应神经模糊推理系统(adaptive-network-based fuzzy inference system,ANFIS)的MBTI模型(ANFIS-MBTI)。该模型将深度神经网络与模糊逻辑推理有机融合,使其能够通过自学习和参数优化策略,灵活适应并精准捕捉社交文本数据中隐含的非线性、模糊和不确定性特征,自动识别出分析社交媒体数据集中的用户行为模式,从而揭示其在信息获取、决策制定及行为方式等方面的心理特质和性格特点。实验结果表明,本文构建的ANFIS-MBTI模型能够高效而准确地从社交文本中挖掘出16种不同的MBTI人格类型,其多层级特征融合机制使人格分类任务的自动化程度显著提升;同时通过模糊规则约束有效控制人工干预需求与数据隐私风险,为大规模在线人格分析提供了具有可扩展性的创新技术路径。展开更多
为了提高对驾驶员疲劳程度检测的准确性与鲁棒性,提出了一种基于主动形状模型的多个特征融合疲劳检测算法。首先利用简单类Haar特征的级联Adaboost算法快速检测出人脸位置,然后对检测到的人脸进行基于主动形状模型(active shape model,A...为了提高对驾驶员疲劳程度检测的准确性与鲁棒性,提出了一种基于主动形状模型的多个特征融合疲劳检测算法。首先利用简单类Haar特征的级联Adaboost算法快速检测出人脸位置,然后对检测到的人脸进行基于主动形状模型(active shape model,ASM)的特征点定位,利用12个ASM特征标记点,得出眼睛、嘴部和头部的状态参数,再相应地计算出PERCLOS(percentage of eyelid closure over the pupil over time)、AECS(average eye closure speed)、哈欠频率、点头频率等4个疲劳特征,最后利用自适应神经模糊推理系统(adaptive network based fuzzy inference system,ANFIS)判决出驾驶员的3级疲劳程度(清醒、疲劳和严重疲劳)。实验结果表明,本方法对驾驶员疲劳检测准确率达93.3%,具有较高的准确性与鲁棒性。展开更多
文摘为了提高对驾驶员疲劳程度检测的准确性与鲁棒性,提出了一种基于主动形状模型的多个特征融合疲劳检测算法。首先利用简单类Haar特征的级联Adaboost算法快速检测出人脸位置,然后对检测到的人脸进行基于主动形状模型(active shape model,ASM)的特征点定位,利用12个ASM特征标记点,得出眼睛、嘴部和头部的状态参数,再相应地计算出PERCLOS(percentage of eyelid closure over the pupil over time)、AECS(average eye closure speed)、哈欠频率、点头频率等4个疲劳特征,最后利用自适应神经模糊推理系统(adaptive network based fuzzy inference system,ANFIS)判决出驾驶员的3级疲劳程度(清醒、疲劳和严重疲劳)。实验结果表明,本方法对驾驶员疲劳检测准确率达93.3%,具有较高的准确性与鲁棒性。