To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a sec...To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path.Firstly,the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output(MIMO)control system.Then,by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity,a systematic robust H∞control scheme is designed,which can achieve good tracking performance,as well as improve system robustness against model uncertainties.Lyapunov stability analysis confirmed the stability of the overall control system.Finally,simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method.展开更多
The study aims to investigate the thermal comfort requirements in residential buildings and to establish an adaptive thermal comfort model in the cold zone of China.A year-long field study was conducted in residential...The study aims to investigate the thermal comfort requirements in residential buildings and to establish an adaptive thermal comfort model in the cold zone of China.A year-long field study was conducted in residential buildings in Xi’an,China.A total of 2069 valid questionnaires,along with indoor environmental parameters were obtained.The results indicated occupants’thermal comfort requirements varied with seasons.The neutral temperatures were 17.9,26.1(highest),25.2,and 17.4℃(lowest),and preferred temperatures were 23.2,25.6(highest),24.8,and 22.4℃(lowest),respectively for spring,summer,autumn,and winter.The neutral temperature and preferred temperature in autumn are close to the neutral temperature in summer,while the neutral temperature and preferred temperature in spring are close to that in winter.Besides,the 80%and 90%acceptable temperature ranges,adaptive thermal comfort models,and thermal comfort zones for each season were established.Human’s adaptability is related to his/her thermal experience of the current season and the previous season.Therefore,compared with the traditional year-round adaptive thermal comfort model,seasonal models can better reflect seasonal variations of human adaptation.This study provides fundamental knowledge of the thermal comfort demand for people in this region.展开更多
For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For ...For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang-bang evasive maneuver with a random switching time.Combined Fast multiple model adaptive estimation(Fast MMAE)algorithm,the cooperative guidance law takes detection configuration affecting the accuracy of interception into consideration.Introduced the detection error model related to the line-of-sight(LOS)separation angle of two interceptors,an optimal cooperative guidance law solving the optimization problem is designed to modulate the LOS separation angle to reduce the estimation error and improve the interception performance.Due to the uncertainty of the target bang-bang maneuver switching time and the effective fitting of its multi-modal motion,Fast MMAE is introduced to identify its maneuver switching time and estimate the acceleration of the target to track and intercept the target accurately.The designed cooperative optimal guidance law with Fast MMAE has better estimation ability and interception performance than the traditional guidance law and estimation method via Monte Carlo simulation.展开更多
In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight tech...In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight technology,hypersonic vehicles have been gradually moving to the stage of weaponization.During the maneuvers,changes of attitude,Mach number and the back pressure can cause the inlet unstart phenomenon of scramjet.Inlet unstart causes significant changes in the aerodynamics of AHV,which may lead to deterioration of the tracking performance or instability of the control system.Therefore,we firstly establish the model of hypersonic vehicle considering inlet unstart,in which the changes of aerodynamics caused by inlet unstart is described as nonlinear uncertainty.Then,an MRAC augmentation method of a linear controller is proposed and the radial basis function(RBF)neural network is used to schedule the adaptive parameters of MRAC.Furthermore,the Lyapunov function is constructed to prove the stability of the proposed method.Finally,numerical simulations show that compared with the linear control method,the proposed method can stabilize the attitude of the hypersonic vehicle more quickly after the inlet unstart,which provides favorable conditions for inlet restart,thus verifying the effectiveness of the augmentation method proposed in the paper.展开更多
A novel robust fault diagnosis scheme, which possesses fault estimate capability as well as fault diagnosis property, is proposed. The scheme is developed based on a suitable combination of the adaptive multiple model...A novel robust fault diagnosis scheme, which possesses fault estimate capability as well as fault diagnosis property, is proposed. The scheme is developed based on a suitable combination of the adaptive multiple model (AMM) and unknown input observer (UIO). The main idea of the proposed scheme stems from the fact that the actuator Lock-in-Place fault is unknown (when and where the actuator gets locked are unknown), and multiple models are used to describe different fault scenarios, then a bank of unknown input observers are designed to implement the disturbance de-coupling. According to Lyapunov theory, proof of the robustness of the newly developed scheme in the presence of faults and disturbances is derived. Numerical simulation results on an aircraft example show satisfactory performance of the proposed algorithm.展开更多
Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is ...Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is used in the stable region with gradual changes, and a nonparametric model is used in the variable region with jumping changes. A generalized agglomerative scheme is used to merge the pixels in the variable region and fill in the small interspaces. A two-threshold sequential algorithmic scheme is used to group the background samples of the variable region into distinct Gaussian distributions to accelerate the kernel density computation speed of the nonparametric model. In the feature-based object classification phase, the surveillance scene is first partitioned according to the road boundaries of different traffic directions and then re-segmented according to their scene localities. The method improves the discriminability of the features in each partition. AdaBoost method is applied to evaluate the relative importance of the features in each partition respectively and distinguish whether an object is a vehicle, a single human, a human group, or a bike. Experimental results show that the proposed method achieves higher performance in comparison with the existing method.展开更多
In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts ...In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements.展开更多
Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec as...Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec asting model. However, the conventional methods of making sell and buy decision based on human forecast or conventional moving average and exponential smoothing methods is no longer be sufficient to meet the future need. Furthermore, the un derlying statistics of the market information change from time to time due to a number of reasons such as change of global economic environment, government poli cies and business risks. This demands for highly adaptive forecasting model which is robust enough to response and adapt well to the fast changes in the dat a characteristics, in other words, the trajectory of the "dynamic characteristic s" of the data. In this paper, an adaptive time-series modelling method was proposed for short -term dynamic forecasting. The method employs an autoregressive (AR) time-seri es model to carry out the forecasting process. A modified least mean square (MLM S) adaptive filter algorithm was established for adjusting the AR model coeffici ents so as to minimise the sum of squared of forecasting errors. A prototype dyn amic forecasting system was built based on the adaptive time-series modelling m ethod. Basically, the dynamic forecasting system can be divided into two phases, i.e. the Learning Phase and the Application Phase. The learning procedures star t with the determination of upper limit of the adaptation gain based on the conv ergence in the mean square criterion. Hence, the optimum ELMS filter parameters are determined using an iteration algorithm which changes each filter parameter i.e. the order, the adaptation gain andthe values initial coefficient vector on e by one inside a predetermined iteration range. The set of parameters which giv es the minimum value for sum of squared errors within the iteration range is sel ected as the optimum set of filter parameters. In the Application Phase, the sys tem is operated under a real-time environment. The sampled data is processed by the optimised ELMS filter and the forecasted data are calculated based on the a daptive time-series model. The error of forecasting is continuously monitored w ithin the predefined tolerance. When the system detects excessive forecasting er ror, a feedback alarm signal was issued for system re-calibration. Experimental results indicated that the convergence rate and sum of squared erro rs during initial adaptation could be significantly improved using the MLMS algorithm. The performance of the system was verified through a series of experi ments conducted on the forecast of materials demand and costing in productio n logistics. Satisfactory results were achieved with the forecast errors confini ng within in most instances. Further applications of the system can be found i n sales demand forecast, inventory management as well as collaborative planning, forecast and replenishment (CPFR) in logistics engineering.展开更多
基金Project (61174203) supported by the National Natural Science Foundation of China
文摘To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path.Firstly,the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output(MIMO)control system.Then,by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity,a systematic robust H∞control scheme is designed,which can achieve good tracking performance,as well as improve system robustness against model uncertainties.Lyapunov stability analysis confirmed the stability of the overall control system.Finally,simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method.
基金Project(51325803)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProject(2020M673489)supported by China Postdoctoral Science FoundationProject(2020-K-196)supported by the Science and Technology Project of Ministry of Housing and Urban-Rural Development,China。
文摘The study aims to investigate the thermal comfort requirements in residential buildings and to establish an adaptive thermal comfort model in the cold zone of China.A year-long field study was conducted in residential buildings in Xi’an,China.A total of 2069 valid questionnaires,along with indoor environmental parameters were obtained.The results indicated occupants’thermal comfort requirements varied with seasons.The neutral temperatures were 17.9,26.1(highest),25.2,and 17.4℃(lowest),and preferred temperatures were 23.2,25.6(highest),24.8,and 22.4℃(lowest),respectively for spring,summer,autumn,and winter.The neutral temperature and preferred temperature in autumn are close to the neutral temperature in summer,while the neutral temperature and preferred temperature in spring are close to that in winter.Besides,the 80%and 90%acceptable temperature ranges,adaptive thermal comfort models,and thermal comfort zones for each season were established.Human’s adaptability is related to his/her thermal experience of the current season and the previous season.Therefore,compared with the traditional year-round adaptive thermal comfort model,seasonal models can better reflect seasonal variations of human adaptation.This study provides fundamental knowledge of the thermal comfort demand for people in this region.
基金This work was supported by the National Natural Science Foundation(NNSF)of China under grant no.61673386,62073335the China Postdoctoral Science Foundation(2017M613201,2019T120944).
文摘For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang-bang evasive maneuver with a random switching time.Combined Fast multiple model adaptive estimation(Fast MMAE)algorithm,the cooperative guidance law takes detection configuration affecting the accuracy of interception into consideration.Introduced the detection error model related to the line-of-sight(LOS)separation angle of two interceptors,an optimal cooperative guidance law solving the optimization problem is designed to modulate the LOS separation angle to reduce the estimation error and improve the interception performance.Due to the uncertainty of the target bang-bang maneuver switching time and the effective fitting of its multi-modal motion,Fast MMAE is introduced to identify its maneuver switching time and estimate the acceleration of the target to track and intercept the target accurately.The designed cooperative optimal guidance law with Fast MMAE has better estimation ability and interception performance than the traditional guidance law and estimation method via Monte Carlo simulation.
基金supported by the Foundation of Shanghai Aerospace Science and Technology(SAST2016077)。
文摘In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight technology,hypersonic vehicles have been gradually moving to the stage of weaponization.During the maneuvers,changes of attitude,Mach number and the back pressure can cause the inlet unstart phenomenon of scramjet.Inlet unstart causes significant changes in the aerodynamics of AHV,which may lead to deterioration of the tracking performance or instability of the control system.Therefore,we firstly establish the model of hypersonic vehicle considering inlet unstart,in which the changes of aerodynamics caused by inlet unstart is described as nonlinear uncertainty.Then,an MRAC augmentation method of a linear controller is proposed and the radial basis function(RBF)neural network is used to schedule the adaptive parameters of MRAC.Furthermore,the Lyapunov function is constructed to prove the stability of the proposed method.Finally,numerical simulations show that compared with the linear control method,the proposed method can stabilize the attitude of the hypersonic vehicle more quickly after the inlet unstart,which provides favorable conditions for inlet restart,thus verifying the effectiveness of the augmentation method proposed in the paper.
基金the National Natural Science Foundation of China (60574083)Aeronautics Science Foun-dation of China (2007ZC52039)
文摘A novel robust fault diagnosis scheme, which possesses fault estimate capability as well as fault diagnosis property, is proposed. The scheme is developed based on a suitable combination of the adaptive multiple model (AMM) and unknown input observer (UIO). The main idea of the proposed scheme stems from the fact that the actuator Lock-in-Place fault is unknown (when and where the actuator gets locked are unknown), and multiple models are used to describe different fault scenarios, then a bank of unknown input observers are designed to implement the disturbance de-coupling. According to Lyapunov theory, proof of the robustness of the newly developed scheme in the presence of faults and disturbances is derived. Numerical simulation results on an aircraft example show satisfactory performance of the proposed algorithm.
基金supported by the Science and Technology Program of Zhejiang Province of China(2005C11001-02).
文摘Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is used in the stable region with gradual changes, and a nonparametric model is used in the variable region with jumping changes. A generalized agglomerative scheme is used to merge the pixels in the variable region and fill in the small interspaces. A two-threshold sequential algorithmic scheme is used to group the background samples of the variable region into distinct Gaussian distributions to accelerate the kernel density computation speed of the nonparametric model. In the feature-based object classification phase, the surveillance scene is first partitioned according to the road boundaries of different traffic directions and then re-segmented according to their scene localities. The method improves the discriminability of the features in each partition. AdaBoost method is applied to evaluate the relative importance of the features in each partition respectively and distinguish whether an object is a vehicle, a single human, a human group, or a bike. Experimental results show that the proposed method achieves higher performance in comparison with the existing method.
基金Project(61175128) supported by the National Natural Science Foundation of ChinaProject(2008AA040203) supported by the National High Technology Research and Development Program of ChinaProject(QC2010009) supported by the Natural Science Foundation of Heilongjiang Province,China
文摘In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements.
文摘Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec asting model. However, the conventional methods of making sell and buy decision based on human forecast or conventional moving average and exponential smoothing methods is no longer be sufficient to meet the future need. Furthermore, the un derlying statistics of the market information change from time to time due to a number of reasons such as change of global economic environment, government poli cies and business risks. This demands for highly adaptive forecasting model which is robust enough to response and adapt well to the fast changes in the dat a characteristics, in other words, the trajectory of the "dynamic characteristic s" of the data. In this paper, an adaptive time-series modelling method was proposed for short -term dynamic forecasting. The method employs an autoregressive (AR) time-seri es model to carry out the forecasting process. A modified least mean square (MLM S) adaptive filter algorithm was established for adjusting the AR model coeffici ents so as to minimise the sum of squared of forecasting errors. A prototype dyn amic forecasting system was built based on the adaptive time-series modelling m ethod. Basically, the dynamic forecasting system can be divided into two phases, i.e. the Learning Phase and the Application Phase. The learning procedures star t with the determination of upper limit of the adaptation gain based on the conv ergence in the mean square criterion. Hence, the optimum ELMS filter parameters are determined using an iteration algorithm which changes each filter parameter i.e. the order, the adaptation gain andthe values initial coefficient vector on e by one inside a predetermined iteration range. The set of parameters which giv es the minimum value for sum of squared errors within the iteration range is sel ected as the optimum set of filter parameters. In the Application Phase, the sys tem is operated under a real-time environment. The sampled data is processed by the optimised ELMS filter and the forecasted data are calculated based on the a daptive time-series model. The error of forecasting is continuously monitored w ithin the predefined tolerance. When the system detects excessive forecasting er ror, a feedback alarm signal was issued for system re-calibration. Experimental results indicated that the convergence rate and sum of squared erro rs during initial adaptation could be significantly improved using the MLMS algorithm. The performance of the system was verified through a series of experi ments conducted on the forecast of materials demand and costing in productio n logistics. Satisfactory results were achieved with the forecast errors confini ng within in most instances. Further applications of the system can be found i n sales demand forecast, inventory management as well as collaborative planning, forecast and replenishment (CPFR) in logistics engineering.