期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测 被引量:47
1
作者 陈道君 龚庆武 +2 位作者 金朝意 张静 王定美 《电网技术》 EI CSCD 北大核心 2013年第4期974-980,共7页
智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm opt... 智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法中加入自适应早熟判定准则、混合扰动算子和动态扩张收缩系数,提出了自适应扰动量子粒子群优化算法(adaptive disturbance quantum-behaved particle swarm optimization,ADQPSO),并使用ADQPSO优化选择SVR的学习参数。实例研究表明,ADQPSO算法全局寻优能力强、鲁棒性好、计算耗时短,利用ADQPSO优化得到的SVR参数,可有效提高模型的预测精度;与反向传播神经网络(back propagation neural network,BPNN)和径向基神经网络(radial basis functionneural network,RBFNN)相比,提出的ADQPSO-SVR能够提高短期风电功率预测的准确性和稳定性。 展开更多
关键词 短期风电功率预测 学习参数选择 自适应扰动量子粒子群优化算法 支持向量回归机
在线阅读 下载PDF
基于改进随机移动算子的人工鱼群算法 被引量:7
2
作者 淦艳 魏延 +1 位作者 杨有 万辉 《计算机工程与应用》 CSCD 2014年第13期147-152,共6页
人工鱼群基本算法在求解多峰函数最优值时,存在计算精度有限,易陷入局部最优,鲁棒性较差以及收敛速率较慢和搜索效率较低的缺点,而随机移动算子的随机性是造成这些缺点的重要因素。通过引入粒子群算法思想和自适应扰动的思想对随机移动... 人工鱼群基本算法在求解多峰函数最优值时,存在计算精度有限,易陷入局部最优,鲁棒性较差以及收敛速率较慢和搜索效率较低的缺点,而随机移动算子的随机性是造成这些缺点的重要因素。通过引入粒子群算法思想和自适应扰动的思想对随机移动算子进行改进,进而提出了基于粒子群算法的人工鱼群算法(PSO-AFSA)和包含自适应扰动项的改进人工鱼群算法(ADI-AFSA),并证明了两种改进算法的收敛性。利用公认测试函数集进行仿真实验,结果表明两种改进算法与人工鱼群基本算法及其传统改进算法相比,提高了计算精度、收敛速率、搜索效率并且具有更好的鲁棒性。 展开更多
关键词 人工鱼群算法 随机移动算子 粒子群算法 自适应扰动
在线阅读 下载PDF
带扰动因子的布尔型粒子群优化算法 被引量:1
3
作者 黄志杨 高鹰 《计算机工程与设计》 CSCD 北大核心 2011年第11期3848-3852,共5页
对二进制布尔型粒子群优化算法提出改进,通过在其速度更新公式中引入扰动因子避免粒子过早的陷入局部极值,提出两种调整惯性权重和学习因子取1的概率的策略以平衡算法的收敛和发散,分别是按照粒子相似性自适应调整和线性调整,由此得到... 对二进制布尔型粒子群优化算法提出改进,通过在其速度更新公式中引入扰动因子避免粒子过早的陷入局部极值,提出两种调整惯性权重和学习因子取1的概率的策略以平衡算法的收敛和发散,分别是按照粒子相似性自适应调整和线性调整,由此得到两种带扰动因子的布尔型粒子群优化算法。4个基准测试函数的对比,实验结果表明了两种改进算法的有效性和优良性能。 展开更多
关键词 二进制粒子群优化 离散粒子群优化 优化算法 扰动因子 自适应调整
在线阅读 下载PDF
基于动态函数连接神经网络的自适应逆控制系统辨识研究 被引量:6
4
作者 虎涛涛 康波 单要楠 《计算机科学》 CSCD 北大核心 2017年第10期203-208,共6页
自适应逆控制将系统扰动消除和动态响应性能独立分开控制,其性能的优劣取决于系统对象、逆对象及逆控制器模型辨识精度的高低。文中提出用动态函数连接神经网络来实现自适应逆控制系统对象、逆对象的同时在线建模和逆控制器的离线建模,... 自适应逆控制将系统扰动消除和动态响应性能独立分开控制,其性能的优劣取决于系统对象、逆对象及逆控制器模型辨识精度的高低。文中提出用动态函数连接神经网络来实现自适应逆控制系统对象、逆对象的同时在线建模和逆控制器的离线建模,并将模型参数的辨识转化为空间参数寻优。针对混沌初始化对已收敛种群结构的破坏性,提出用变参数混沌粒子群优化算法对神经网络权值进行全局寻优,通过仿真实验可以看出基于动态函数连接神经网络的建模误差小,辨识精度高;与当前的参考模型自适应控制方法进行对比分析,所提方法能取得较好的扰动消除效果,并能使系统的跟踪响应性能得到提高,从而验证了方法的有效性、可行性。 展开更多
关键词 自适应逆控制 扰动消除 系统辨识 动态函数连接神经网络 变参数 混沌粒子群算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部