非量测相机以价格低、体积小、使用灵活等优势被广泛应用于高精度测量工作中,但相机标定结果对测量精度影响较大,针对现有相机标定方法存在着精度不够或标定效率不高等问题,文章提出一种联合加速分割检测特征(features from accelerated...非量测相机以价格低、体积小、使用灵活等优势被广泛应用于高精度测量工作中,但相机标定结果对测量精度影响较大,针对现有相机标定方法存在着精度不够或标定效率不高等问题,文章提出一种联合加速分割检测特征(features from accelerated segment test,FAST)算法和双像光束法平差的相机标定方法。首先利用FAST算法对像片标志点自动提取,利用直接线性变换方法解得相机内、外参数初值;然后基于固定基线长度约束的双像光束法平差模型解算相机相关参数,并通过分类阈值方法提高模型收敛效率。结果表明:该方法相较于普通双像光束法平差的精度有所提升,其标定后的中误差达到0.0064 mm,且实现了相机标定流程的半自动化,提高了作业效率,有望应用于实际场景的相机标定作业。展开更多
经典的特征点提取算法是从整个图像进行遍历来确定特征点,运算量较大,不能满足实时应用的要求。提出了一种特征点快速稀疏提取算法,该方法首先利用高斯拉普拉斯算子(Laplacian of Gaussian,LoG)提取图像梯度,设定阈值过滤获得图像的边...经典的特征点提取算法是从整个图像进行遍历来确定特征点,运算量较大,不能满足实时应用的要求。提出了一种特征点快速稀疏提取算法,该方法首先利用高斯拉普拉斯算子(Laplacian of Gaussian,LoG)提取图像梯度,设定阈值过滤获得图像的边缘稀疏矩阵,然后在稀疏矩阵的基础上利用改进的加速分割测试特征(Features from Accelerated Segment Test,FAST)检测算法,解决了传统匹配算法提取特征点耗时的问题,使图像实时匹配成为可能。为减少误匹配对,利用感知哈希算法对匹配对进行提纯,并根据仿射不变性建立两个约束条件进一步验证单应性矩阵,提高配准精度。实验结果证明,该算法提高了特征点提取的速度以及配准精度。展开更多
文摘经典的特征点提取算法是从整个图像进行遍历来确定特征点,运算量较大,不能满足实时应用的要求。提出了一种特征点快速稀疏提取算法,该方法首先利用高斯拉普拉斯算子(Laplacian of Gaussian,LoG)提取图像梯度,设定阈值过滤获得图像的边缘稀疏矩阵,然后在稀疏矩阵的基础上利用改进的加速分割测试特征(Features from Accelerated Segment Test,FAST)检测算法,解决了传统匹配算法提取特征点耗时的问题,使图像实时匹配成为可能。为减少误匹配对,利用感知哈希算法对匹配对进行提纯,并根据仿射不变性建立两个约束条件进一步验证单应性矩阵,提高配准精度。实验结果证明,该算法提高了特征点提取的速度以及配准精度。