The effect of oxygen partial pressure (Po2) during the channel layer deposition on bias stability of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) is investigated. As Po2 increases fr...The effect of oxygen partial pressure (Po2) during the channel layer deposition on bias stability of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) is investigated. As Po2 increases from 10% to 30%, it is found that the device shows enhanced bias stress stability with significantly reduced threshold voltage drift under positive gate bias stress. Based on the x-ray photoelectron spectroscopy measurement, the concentration of oxygen vacancies (Or) within the a-IGZO layer is suppressed by increasing Po2. Meanwhile, the low-frequency noise analysis indicates that the average trap density near the channel/dielectric interface continuously drops with increasing Po2. Therefore, the improved interface quality with increasing Po2 during the channel layer deposition can be attributed to the reduction of interface Ov-related defects, which agrees with the enhanced bias stress stability of the a-IGZO TFTs.展开更多
Active metamaterials incorporating with non-Foster elements have been considered as one of the means of overcoming inherent limitations of the passive counterparts, thus achieving broadband or gain metamaterials. Howe...Active metamaterials incorporating with non-Foster elements have been considered as one of the means of overcoming inherent limitations of the passive counterparts, thus achieving broadband or gain metamaterials. However, realistic active metamaterials, especially non-Foster loaded medium, would face the challenge of the possibility of instability. Moreover,they normally appear to be time-variant and in unsteady states, which leads to the necessity of a stability method to cope with the stability issue considering the system model uncertainty. In this paper, we propose an immittance-based stability method to design a non-Foster loaded metamaterial ensuring robust stability. First, the principle of this stability method is introduced after comparing different stability criteria. Based on the equivalent system model, the stability characterization is used to give the design specifications to achieve an active metamaterial with robust stability. Finally, it is applied to the practical design of active metamaterial with non-Foster loaded loop arrays. By introducing the disturbance into the nonFoster circuit(NFC), the worst-case model uncertainty is considered during the design, and the reliability of our proposed method is verified. This method can also be applied to other realistic design of active metamaterials.展开更多
Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness o...Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness of OER and the high prices as well as the scarcity of the most active precious metal electrocatalysts are the major bottleneck in these devices. Developing low-cost non-precious metal catalysts with high activity and stability for OER is highly desirable. A facile, in situ template method combining the dodecyl benzene sulfuric acid sodium(SDBS) assisted hydrothermal process with subsequent high-temperature treatment was developed to prepare porous Co3O4 with improved surface area and hierarchical porous structure as precious catalysts alternative for oxygen evolution reaction(OER). Due to the unique structure, the as-prepared catalyst shows higher electrocatalytic activity than Co3O4 prepared by traditional thermal-decomposition method(noted as Co3O4-T) and commercial IrO2 catalyst for OER in 0.1M KOH aqueous solution. Moreover, it displays improved stability than Co3O4-T. The results demonstrate a highly efficient, scalable, and low cost method for developing highly active and stable OER electrocatalysts in alkaline solutions.展开更多
The performance of the two newly developed bimetallic catalysts based on the precursor, Mo/Al_2O_3, was compared for reverse water gas shift(RWGS) reaction. The structures of the precursor and the catalysts were studi...The performance of the two newly developed bimetallic catalysts based on the precursor, Mo/Al_2O_3, was compared for reverse water gas shift(RWGS) reaction. The structures of the precursor and the catalysts were studied using X-ray diffraction(XRD), Brunauer–Emmett–Teller(BET) analysis, inductively coupled plasma-atomic emission spectrometry(ICP-AES), CO chemisorption, temperature programmed reduction of hydrogen(H_2-TPR) and scanning electron microscopy(SEM) techniques. The activity of Fe-Mo and Co-Mo catalysts was compared in a fixed bed reactor at different temperatures. It is shown that the Co-Mo catalyst has higher CO_2 conversion at all temperature level. The time-on-stream(TOS) analysis of the activity of catalysts for the RWGS reaction was carried out over a continuous period of 60h for both catalysts. The Fe-Mo/Al_2O_3 catalyst exhibits good stability within a period of 60h, however, the Co-Mo/Al_2O_3 is gradually deactivated after 50h of reaction time. Existence of(Fe_2(MoO4_))_3 phase in Fe-Mo/Al_2O_3 catalyst makes this catalyst more stable for RWGS reaction.展开更多
There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNT...There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNTs composite have gained increasing attention. In this paper, the 3-D hollow sphere MnO_2 nanotube-supported Co_3O_4 nanoparticles and its carbon nanotubes hybrid material(Co_3 O_4/MnO_2-CNTs) have been synthesized via a simple co-precipitation method combined with post-heat treatment. The morphology and composition of the catalysts are thoroughly analyzed through SEM, TEM, TEM-mapping, XRD, EDX and XPS. In comparison with the commercial 20% Pt/C, Co_3O_4/MnO_2,bare MnO_2 nanotubes and CNTs, the hybrid Co_3O_4/MnO_2-CNTs-350 exhibits perfect bi-functional catalytic activity toward oxygen reduction reaction and oxygen evolution reaction under alkaline condition(0.1 M KOH). Therefore, high cell performances are achieved which result in an appropriate open circuit voltage(~1.47 V),a high discharge peak power density(340 mW cm^(-2)) and a large specific capacity(775 mAh g^(-1) at 10 mA cm^(-2)) for the primary Zn-air battery, a small charge-discharge voltage gap and a high cycle-life(504 cycles at 10 mA cm^(-2) with 10 min per cycle) for the rechargeable Zn-air battery. In particular, the simple synthesis method is suitable for a large-scale production of this bifunctional material due to a green, cost effective and readily available process.展开更多
Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reductio...Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reduction(TPR) method was used for hydrogenation of C9 petroleum resins. The effect of reaction conditions on catalytic performance was studied, and the results showed that the optimum reaction temperature, pressure and liquid hourly space velocity(LHSV) was 250 ℃, 6.0 MPa, and 1.0 h-1, respectively. The bromine numbers of hydrogenated products were maintained at low values(250 mg Br/100g) within 300h, showing the high activity and stability of Ni2P/SiO2 catalyst. The fresh and spent catalysts were characterized by X-ray diffraction(XRD), BET surface area(BET) analysis, scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared(FTIR) pyridine adsorption, and X-ray photoelectron spectroscopy(XPS). Compared with the traditional sulfurated-Ni W catalysts, Ni2P possessed globe-like structure instead of layered structure like the active phase of Ni WS, thereof exposing more active sites, which were responsible for the high activity of Ni2P/SiO2 catalyst. The stability of Ni2P/SiO2 catalyst was probably attributed to its high sulfur tolerance, antisintering, anti-coking and carbon-resistance ability. These properties might be further ascribed to the special Ni-P-S surface phase, high thermal stability of Ni2P nanoparticles and weak surface acidity for the Ni2P/SiO2 catalyst.展开更多
基金Supported by the National Basic Research Program of China under Grant Nos 2010CB327504,2011CB922100 and2011CB301900the National Natural Science Foundation of China under Grant Nos 11104130 and 61322112+2 种基金the Natural Science Foundation of Jiangsu Province under Grant Nos BK2011556 and BK2011050the Priority Academic Program Development of Jiangsu Higher Education Institutionsand the NUPTSF Grant Nos NY213069 and NY214028
文摘The effect of oxygen partial pressure (Po2) during the channel layer deposition on bias stability of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) is investigated. As Po2 increases from 10% to 30%, it is found that the device shows enhanced bias stress stability with significantly reduced threshold voltage drift under positive gate bias stress. Based on the x-ray photoelectron spectroscopy measurement, the concentration of oxygen vacancies (Or) within the a-IGZO layer is suppressed by increasing Po2. Meanwhile, the low-frequency noise analysis indicates that the average trap density near the channel/dielectric interface continuously drops with increasing Po2. Therefore, the improved interface quality with increasing Po2 during the channel layer deposition can be attributed to the reduction of interface Ov-related defects, which agrees with the enhanced bias stress stability of the a-IGZO TFTs.
基金Project supported by the National Natural Science Foundation of China(Grant No.61701349)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2017QF012 and ZR2017MF042)the Program for the Top Young Innovative Talents,China(Grant No.Q1313-03)
文摘Active metamaterials incorporating with non-Foster elements have been considered as one of the means of overcoming inherent limitations of the passive counterparts, thus achieving broadband or gain metamaterials. However, realistic active metamaterials, especially non-Foster loaded medium, would face the challenge of the possibility of instability. Moreover,they normally appear to be time-variant and in unsteady states, which leads to the necessity of a stability method to cope with the stability issue considering the system model uncertainty. In this paper, we propose an immittance-based stability method to design a non-Foster loaded metamaterial ensuring robust stability. First, the principle of this stability method is introduced after comparing different stability criteria. Based on the equivalent system model, the stability characterization is used to give the design specifications to achieve an active metamaterial with robust stability. Finally, it is applied to the practical design of active metamaterial with non-Foster loaded loop arrays. By introducing the disturbance into the nonFoster circuit(NFC), the worst-case model uncertainty is considered during the design, and the reliability of our proposed method is verified. This method can also be applied to other realistic design of active metamaterials.
基金supported by the Youth Innovation Promotion Association(no.2015147)CAS and National Program on Key Basic Research Project(973 Program,2012CB215500)+1 种基金the Outstanding Youngest Scientist FoundationChinese Academy of Sciences(CAS)
文摘Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness of OER and the high prices as well as the scarcity of the most active precious metal electrocatalysts are the major bottleneck in these devices. Developing low-cost non-precious metal catalysts with high activity and stability for OER is highly desirable. A facile, in situ template method combining the dodecyl benzene sulfuric acid sodium(SDBS) assisted hydrothermal process with subsequent high-temperature treatment was developed to prepare porous Co3O4 with improved surface area and hierarchical porous structure as precious catalysts alternative for oxygen evolution reaction(OER). Due to the unique structure, the as-prepared catalyst shows higher electrocatalytic activity than Co3O4 prepared by traditional thermal-decomposition method(noted as Co3O4-T) and commercial IrO2 catalyst for OER in 0.1M KOH aqueous solution. Moreover, it displays improved stability than Co3O4-T. The results demonstrate a highly efficient, scalable, and low cost method for developing highly active and stable OER electrocatalysts in alkaline solutions.
基金the Iranian Nano Technology Initiative Council and the Petroleum University of Technology for financial support
文摘The performance of the two newly developed bimetallic catalysts based on the precursor, Mo/Al_2O_3, was compared for reverse water gas shift(RWGS) reaction. The structures of the precursor and the catalysts were studied using X-ray diffraction(XRD), Brunauer–Emmett–Teller(BET) analysis, inductively coupled plasma-atomic emission spectrometry(ICP-AES), CO chemisorption, temperature programmed reduction of hydrogen(H_2-TPR) and scanning electron microscopy(SEM) techniques. The activity of Fe-Mo and Co-Mo catalysts was compared in a fixed bed reactor at different temperatures. It is shown that the Co-Mo catalyst has higher CO_2 conversion at all temperature level. The time-on-stream(TOS) analysis of the activity of catalysts for the RWGS reaction was carried out over a continuous period of 60h for both catalysts. The Fe-Mo/Al_2O_3 catalyst exhibits good stability within a period of 60h, however, the Co-Mo/Al_2O_3 is gradually deactivated after 50h of reaction time. Existence of(Fe_2(MoO4_))_3 phase in Fe-Mo/Al_2O_3 catalyst makes this catalyst more stable for RWGS reaction.
基金financial support from the National Natural Science Foundation of China (U1510120, 91645110)the Project of Introducing Overseas Intelligence High Education of China (2017-2018)+1 种基金the Graduate Thesis Innovation Foundation of Donghua University (EG2016034)the College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University
文摘There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNTs composite have gained increasing attention. In this paper, the 3-D hollow sphere MnO_2 nanotube-supported Co_3O_4 nanoparticles and its carbon nanotubes hybrid material(Co_3 O_4/MnO_2-CNTs) have been synthesized via a simple co-precipitation method combined with post-heat treatment. The morphology and composition of the catalysts are thoroughly analyzed through SEM, TEM, TEM-mapping, XRD, EDX and XPS. In comparison with the commercial 20% Pt/C, Co_3O_4/MnO_2,bare MnO_2 nanotubes and CNTs, the hybrid Co_3O_4/MnO_2-CNTs-350 exhibits perfect bi-functional catalytic activity toward oxygen reduction reaction and oxygen evolution reaction under alkaline condition(0.1 M KOH). Therefore, high cell performances are achieved which result in an appropriate open circuit voltage(~1.47 V),a high discharge peak power density(340 mW cm^(-2)) and a large specific capacity(775 mAh g^(-1) at 10 mA cm^(-2)) for the primary Zn-air battery, a small charge-discharge voltage gap and a high cycle-life(504 cycles at 10 mA cm^(-2) with 10 min per cycle) for the rechargeable Zn-air battery. In particular, the simple synthesis method is suitable for a large-scale production of this bifunctional material due to a green, cost effective and readily available process.
基金financially supported by the Scientific Research Fund of Zhejiang Provincial Education Department (Y201225114)the Natural Science Foundation of Zhejiang Province (LY13B030006)
文摘Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reduction(TPR) method was used for hydrogenation of C9 petroleum resins. The effect of reaction conditions on catalytic performance was studied, and the results showed that the optimum reaction temperature, pressure and liquid hourly space velocity(LHSV) was 250 ℃, 6.0 MPa, and 1.0 h-1, respectively. The bromine numbers of hydrogenated products were maintained at low values(250 mg Br/100g) within 300h, showing the high activity and stability of Ni2P/SiO2 catalyst. The fresh and spent catalysts were characterized by X-ray diffraction(XRD), BET surface area(BET) analysis, scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared(FTIR) pyridine adsorption, and X-ray photoelectron spectroscopy(XPS). Compared with the traditional sulfurated-Ni W catalysts, Ni2P possessed globe-like structure instead of layered structure like the active phase of Ni WS, thereof exposing more active sites, which were responsible for the high activity of Ni2P/SiO2 catalyst. The stability of Ni2P/SiO2 catalyst was probably attributed to its high sulfur tolerance, antisintering, anti-coking and carbon-resistance ability. These properties might be further ascribed to the special Ni-P-S surface phase, high thermal stability of Ni2P nanoparticles and weak surface acidity for the Ni2P/SiO2 catalyst.