The removal efficiencies of heavy metals(As, Cr, Cu, Ni, Pb and Zn) were investigated in the 17 operating municipal wastewater treatment plants(WWTPs) and compared with those in four main activated sludge processes. S...The removal efficiencies of heavy metals(As, Cr, Cu, Ni, Pb and Zn) were investigated in the 17 operating municipal wastewater treatment plants(WWTPs) and compared with those in four main activated sludge processes. Significant differences of heavy metal removal efficiencies were observed among four activated sludge processes. The removal efficiency for As(75.5%) in the oxidation ditch(OD) process is significantly higher than that in the conventional activated sludge(CAS) process(38.6%) or sequencing batch reactor(SBR) process(51.4%). The mean removal efficiencies for Cu and Ni in the OD process are 90.5% and 46.7%, respectively, while low mean removal efficiencies are observed for Cu(69.9%) and Ni(16.5%), respectively, in the SBR process. The removal efficiencies for Cu and Ni in the OD process are significantly higher than those in the anaerobic-anoxic-oxic(A2-O) process. These results highlight the differences of removal efficiencies for heavy metals in different processes and should be considered when selecting a wastewater treatment process.展开更多
Instead of pure bacteria, induction mutation of activated sludge by ultraviolet (Uv) was studied and used to treat pulping wastewater by continuous- flow. The result showed the mutagenic activated sludge had remarkabl...Instead of pure bacteria, induction mutation of activated sludge by ultraviolet (Uv) was studied and used to treat pulping wastewater by continuous- flow. The result showed the mutagenic activated sludge had remarkable effect and application potential in pulping wastewater treatment. Comparing with common activated sludge, the mutagenic activated sludge was more suitable for lignose decomposition and had high decomposing efficiency.展开更多
基金Project(2012AA06A202)supported by Hi-tech Research and Development Project of China
文摘The removal efficiencies of heavy metals(As, Cr, Cu, Ni, Pb and Zn) were investigated in the 17 operating municipal wastewater treatment plants(WWTPs) and compared with those in four main activated sludge processes. Significant differences of heavy metal removal efficiencies were observed among four activated sludge processes. The removal efficiency for As(75.5%) in the oxidation ditch(OD) process is significantly higher than that in the conventional activated sludge(CAS) process(38.6%) or sequencing batch reactor(SBR) process(51.4%). The mean removal efficiencies for Cu and Ni in the OD process are 90.5% and 46.7%, respectively, while low mean removal efficiencies are observed for Cu(69.9%) and Ni(16.5%), respectively, in the SBR process. The removal efficiencies for Cu and Ni in the OD process are significantly higher than those in the anaerobic-anoxic-oxic(A2-O) process. These results highlight the differences of removal efficiencies for heavy metals in different processes and should be considered when selecting a wastewater treatment process.
文摘Instead of pure bacteria, induction mutation of activated sludge by ultraviolet (Uv) was studied and used to treat pulping wastewater by continuous- flow. The result showed the mutagenic activated sludge had remarkable effect and application potential in pulping wastewater treatment. Comparing with common activated sludge, the mutagenic activated sludge was more suitable for lignose decomposition and had high decomposing efficiency.