In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intrig...In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intriguing geometry‑dependent optical chirality,which benefits the combination of plasmonic characteristics with chirality.Recent advances in the biomolecule‑directed geometric control of intrinsically chiral plasmonic nanomaterials have further provided great opportunities for their widespread applications in many emerging technological areas.In this review,we present the recent progress in biosensing using chiral inorganic nanomaterials,with a particular focus on electrochemical and enzyme‑mimicking catalytic approaches.This paper commences with a review of the basic tenets underlying chiral nanocatalysts,incorporating the chiral ligand‑induced mechanism and the architectures of intrinsically chiral nanostructures.Additionally,it methodically expounds upon the applications of chiral nanocatalysts in the realms of electrochemical biosensing and enzyme‑mimicking catalytic biosensing respectively.Conclusively,it proffers a prospective view of the hurdles and prospects that accompany the deployment of chiral nanoprobes for nascent biosensing applications.By rational design of the chiral nanoprobes,it is envisioned that biosensing with increasing sensitivity and resolution toward the single‑molecule level can be achieved,which will substantially promote sensing applications in many emerging interdisciplinary areas.展开更多
UBE2O is a distinctive ubiquitin-conjugating enzyme characterized by its large size(1292 residues)and dual E2/E3 enzymatic activities,enabling diverse ubiquitylation types.Unlike typical E2 enzymes(150~200 residues),U...UBE2O is a distinctive ubiquitin-conjugating enzyme characterized by its large size(1292 residues)and dual E2/E3 enzymatic activities,enabling diverse ubiquitylation types.Unlike typical E2 enzymes(150~200 residues),UBE2O’s multifunctionality allows it to regulate substrate degradation,subcellular localization,and functional modulation.Emerging studies highlight its critical roles in protein quality control,erythroid differentiation,metabolic regulation,and maintenance of circadian rhythm.Dysregulation of UBE2O is implicated in various diseases,including cancers,neurodegenerative disorders,and metabolic diseases.This review extensively discusses the unique structural features,diverse biological functions,and pathological roles of UBE2O,as well as its therapeutic potential for associated diseases.展开更多
Isoflavones which mainly distributed in leguminous plants have plenty of health benefits.Isoflavone synthase(IFS)is a membrane-associated cytochrome P450 enzyme(CYP450)which carries out the unique aryl-ring migration ...Isoflavones which mainly distributed in leguminous plants have plenty of health benefits.Isoflavone synthase(IFS)is a membrane-associated cytochrome P450 enzyme(CYP450)which carries out the unique aryl-ring migration and hydroxylation.So far,few crystal structures of plant P450s have been obtained.We determined the crystal structure of IFS from Medicago truncatula at 1.9 by MAD method using a selenomethionine substituted crystal and conducted molecular docking and mutagenesis study.The structure of IFS complexed with imidazole exhibits the helix Iα-loop-helix Iβmotif which corresponds to helix I of other P 450s.Compared with structures of common P450s,IFS/imidazole structure contains an extra domain,i.e.,theγ-domain.The structure reveals a homodimer in which theγ-domain of one molecule interacts with theβ-domain of another.The plane of heme group makes an angle of approximately 40°with the helix Iα-loop-helix Iβmotif.Molecular docking combined with mutagenesis study suggested that Trp-128 and Asp-300 might play important roles in substrate binding and recognition.Phe-301,Ser-303 and Gly-305 from the helix Iα-loop-helix Iβmotif may play important roles in the aryl-ring migration.These novel structural features reveal insights into the unique reaction mechanism of IFS and provide a basis for engineering IFS in leguminous crops for health purpose.展开更多
In order to explore the remediation effects of lignite and biochar on Zn-contaminated soil,this experiment studied the impacts of adding lignite and biochar on soil respiration,soil enzyme activity,and organic carbon ...In order to explore the remediation effects of lignite and biochar on Zn-contaminated soil,this experiment studied the impacts of adding lignite and biochar on soil respiration,soil enzyme activity,and organic carbon in Zn-contaminated soil through soil culture experiments,which provided a theoretical basis for the remediation and improvement as well as for the development and utilization of Zn-contaminated soil.The study was an L8(4×2^(2))orthogonal experimental design with eight treatments,in which there were four levels of Zn contamination concentration(Z0:0;Z1:125 mg•kg^(-1);Z2:250 mg•kg^(-1);Z3:500 mg•kg^(-1)),low-Zn(125-250 mg•kg^(-1))and high-Zn(500 mg•kg^(-1)),two levels of lignite(H0:0;H1:13.33 g•kg^(-1)),two levels of biochar(C0:0;C1:3.33 g•kg^(-1)),with four replicates per treatment.The results showed that lignite or biochar and their interaction had extremely significant effects on both respiration rate and accumulation in Zn-contaminated soil.Among the high Zn-contaminated treatments,the mixed application of lignite and biochar(Z3H1C1 treatment)had the fastest soil respiration rate and the highest soil respiration accumulation.Lignite,biochar and their interaction had significant or extremely significant effects on sucrase,catalase and polyphenol oxidase activities in Zn-contaminated soil.Among the high Zn-contaminated treatments(Z3),the addition of biochar alone had the most significant effects on the increase of soil sucrase and catalase enzyme activities,while the mixed application of lignite and biochar had the most significant effects on the increase of soil polyphenol oxidase activity.Lignite,biochar and their interaction had significant or extremely significant effects on the total organic carbon,active organic carbon and microbial carbon content of Zn-contaminated soils.Soil total organic carbon content in general peaked at day 80.Among the high Zn-contaminated treatments,the addition of biochar alone had the most significant effects on the total organic carbon content of the soil,while the mixed application of lignite and biochar had the most significant effect on the microbiomass carbon content.展开更多
Eight-month-old Wulong geese were fed with the diet with different proportions of Leymus chiesensis at the same energy and protein level. The activities of plasma Alkaline Phosphatase (AKP), Acid Phosphatase (ACP)...Eight-month-old Wulong geese were fed with the diet with different proportions of Leymus chiesensis at the same energy and protein level. The activities of plasma Alkaline Phosphatase (AKP), Acid Phosphatase (ACP), Choline Esterace (CHE), Lactic Dehydrogenase (LDH), Glutamicoxalacetic Transaminase (GOT) and Glutamatepyruvate Transaminase (GPT) were determined and then their correlations with fiber digestibility and the apparent digestibility of Ca, R Met and Cys were analyzed. The results showed that the activity of AKP took on a significant downtrend as the increasing of Leymus chinensis proportion (P〈0.05). There was a negative correlation between the AKP activity and the digestibility of crude fiber (CF), neutral detergent fiber (NDF) and acid detergent fiber (ADF) (P〈0.05). However, there was a significant positive correlation between the AKP activity and the apparent digestibility of Ca, Met and Cys (P〈0.05). Moreover, the activities of the other five enzymes had no significant correlation with the digestibility of CF, NDF, ADF, and the apparent digestibility of Ca, Met and Cys (P〉0.05).展开更多
To evaluate the influence of various Cr(Ⅵ) concentrations (0.05, 0.25, 0.50, 1.00 and 2.00 g/kg) on the activity of soil enzymes, the activities of catalase, polyphenol oxidase, dehydrogenase, alkaline phosphatase in...To evaluate the influence of various Cr(Ⅵ) concentrations (0.05, 0.25, 0.50, 1.00 and 2.00 g/kg) on the activity of soil enzymes, the activities of catalase, polyphenol oxidase, dehydrogenase, alkaline phosphatase in soils were investigated in the incubation experiment with a period of 35 d. The results indicate that all the tested Cr(Ⅵ) concentrations significantly inhibit dehydrogenase activity by over 70% after 35 d. The activity of alkaline phosphatase is slightly inhibited during the whole experiment except for on the day 7. Cr(Ⅵ) has no obvious effect on the activity of catalase in soil. On the contrary, Cr(Ⅵ) stimulates the activity of polyphenol oxidase. The results suggest that dehydrogenase activity can be used as an indicator for assessing the severity of chromium pollution.展开更多
文摘In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intriguing geometry‑dependent optical chirality,which benefits the combination of plasmonic characteristics with chirality.Recent advances in the biomolecule‑directed geometric control of intrinsically chiral plasmonic nanomaterials have further provided great opportunities for their widespread applications in many emerging technological areas.In this review,we present the recent progress in biosensing using chiral inorganic nanomaterials,with a particular focus on electrochemical and enzyme‑mimicking catalytic approaches.This paper commences with a review of the basic tenets underlying chiral nanocatalysts,incorporating the chiral ligand‑induced mechanism and the architectures of intrinsically chiral nanostructures.Additionally,it methodically expounds upon the applications of chiral nanocatalysts in the realms of electrochemical biosensing and enzyme‑mimicking catalytic biosensing respectively.Conclusively,it proffers a prospective view of the hurdles and prospects that accompany the deployment of chiral nanoprobes for nascent biosensing applications.By rational design of the chiral nanoprobes,it is envisioned that biosensing with increasing sensitivity and resolution toward the single‑molecule level can be achieved,which will substantially promote sensing applications in many emerging interdisciplinary areas.
基金Supported by Special Projects in Key Areas for Guangdong Provincial Colleges and Universities (No.2021ZDZX2009)Guangzhou Medical University Discipline Construction Funds (Basic Medicine)(No.JCXKJS2022A05)。
文摘UBE2O is a distinctive ubiquitin-conjugating enzyme characterized by its large size(1292 residues)and dual E2/E3 enzymatic activities,enabling diverse ubiquitylation types.Unlike typical E2 enzymes(150~200 residues),UBE2O’s multifunctionality allows it to regulate substrate degradation,subcellular localization,and functional modulation.Emerging studies highlight its critical roles in protein quality control,erythroid differentiation,metabolic regulation,and maintenance of circadian rhythm.Dysregulation of UBE2O is implicated in various diseases,including cancers,neurodegenerative disorders,and metabolic diseases.This review extensively discusses the unique structural features,diverse biological functions,and pathological roles of UBE2O,as well as its therapeutic potential for associated diseases.
文摘Isoflavones which mainly distributed in leguminous plants have plenty of health benefits.Isoflavone synthase(IFS)is a membrane-associated cytochrome P450 enzyme(CYP450)which carries out the unique aryl-ring migration and hydroxylation.So far,few crystal structures of plant P450s have been obtained.We determined the crystal structure of IFS from Medicago truncatula at 1.9 by MAD method using a selenomethionine substituted crystal and conducted molecular docking and mutagenesis study.The structure of IFS complexed with imidazole exhibits the helix Iα-loop-helix Iβmotif which corresponds to helix I of other P 450s.Compared with structures of common P450s,IFS/imidazole structure contains an extra domain,i.e.,theγ-domain.The structure reveals a homodimer in which theγ-domain of one molecule interacts with theβ-domain of another.The plane of heme group makes an angle of approximately 40°with the helix Iα-loop-helix Iβmotif.Molecular docking combined with mutagenesis study suggested that Trp-128 and Asp-300 might play important roles in substrate binding and recognition.Phe-301,Ser-303 and Gly-305 from the helix Iα-loop-helix Iβmotif may play important roles in the aryl-ring migration.These novel structural features reveal insights into the unique reaction mechanism of IFS and provide a basis for engineering IFS in leguminous crops for health purpose.
基金Supported by the Special Fund for Agro-scientific Research in Public Interest in China(201503119-06-01)。
文摘In order to explore the remediation effects of lignite and biochar on Zn-contaminated soil,this experiment studied the impacts of adding lignite and biochar on soil respiration,soil enzyme activity,and organic carbon in Zn-contaminated soil through soil culture experiments,which provided a theoretical basis for the remediation and improvement as well as for the development and utilization of Zn-contaminated soil.The study was an L8(4×2^(2))orthogonal experimental design with eight treatments,in which there were four levels of Zn contamination concentration(Z0:0;Z1:125 mg•kg^(-1);Z2:250 mg•kg^(-1);Z3:500 mg•kg^(-1)),low-Zn(125-250 mg•kg^(-1))and high-Zn(500 mg•kg^(-1)),two levels of lignite(H0:0;H1:13.33 g•kg^(-1)),two levels of biochar(C0:0;C1:3.33 g•kg^(-1)),with four replicates per treatment.The results showed that lignite or biochar and their interaction had extremely significant effects on both respiration rate and accumulation in Zn-contaminated soil.Among the high Zn-contaminated treatments,the mixed application of lignite and biochar(Z3H1C1 treatment)had the fastest soil respiration rate and the highest soil respiration accumulation.Lignite,biochar and their interaction had significant or extremely significant effects on sucrase,catalase and polyphenol oxidase activities in Zn-contaminated soil.Among the high Zn-contaminated treatments(Z3),the addition of biochar alone had the most significant effects on the increase of soil sucrase and catalase enzyme activities,while the mixed application of lignite and biochar had the most significant effects on the increase of soil polyphenol oxidase activity.Lignite,biochar and their interaction had significant or extremely significant effects on the total organic carbon,active organic carbon and microbial carbon content of Zn-contaminated soils.Soil total organic carbon content in general peaked at day 80.Among the high Zn-contaminated treatments,the addition of biochar alone had the most significant effects on the total organic carbon content of the soil,while the mixed application of lignite and biochar had the most significant effect on the microbiomass carbon content.
文摘Eight-month-old Wulong geese were fed with the diet with different proportions of Leymus chiesensis at the same energy and protein level. The activities of plasma Alkaline Phosphatase (AKP), Acid Phosphatase (ACP), Choline Esterace (CHE), Lactic Dehydrogenase (LDH), Glutamicoxalacetic Transaminase (GOT) and Glutamatepyruvate Transaminase (GPT) were determined and then their correlations with fiber digestibility and the apparent digestibility of Ca, R Met and Cys were analyzed. The results showed that the activity of AKP took on a significant downtrend as the increasing of Leymus chinensis proportion (P〈0.05). There was a negative correlation between the AKP activity and the digestibility of crude fiber (CF), neutral detergent fiber (NDF) and acid detergent fiber (ADF) (P〈0.05). However, there was a significant positive correlation between the AKP activity and the apparent digestibility of Ca, Met and Cys (P〈0.05). Moreover, the activities of the other five enzymes had no significant correlation with the digestibility of CF, NDF, ADF, and the apparent digestibility of Ca, Met and Cys (P〉0.05).
基金Projects(2006AA06Z374, 2007AA021304) supported by the National High-Tech Research and Development Program of ChinaProject(2008SK2007) supported by the Key Program of Science and Technology of Hunan Province, China
文摘To evaluate the influence of various Cr(Ⅵ) concentrations (0.05, 0.25, 0.50, 1.00 and 2.00 g/kg) on the activity of soil enzymes, the activities of catalase, polyphenol oxidase, dehydrogenase, alkaline phosphatase in soils were investigated in the incubation experiment with a period of 35 d. The results indicate that all the tested Cr(Ⅵ) concentrations significantly inhibit dehydrogenase activity by over 70% after 35 d. The activity of alkaline phosphatase is slightly inhibited during the whole experiment except for on the day 7. Cr(Ⅵ) has no obvious effect on the activity of catalase in soil. On the contrary, Cr(Ⅵ) stimulates the activity of polyphenol oxidase. The results suggest that dehydrogenase activity can be used as an indicator for assessing the severity of chromium pollution.