Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is base...Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is based on the assumption of one-dimensional sampling and searching method. In this work a new way to model the gray-level appearance of the objects is explored, using a two-dimensional sampling and searching technique in a rectangular area around each landmark of object shape. The ASM based on this improvement is compared with the original ASM on an identical medical image set for task of spine localization. Experiments demonstrate that the method produces significantly fast, effective, accurate results for spine localization in medical images.展开更多
Active Shape Model (ASM) is a powerful statistical tool to extract the facial features of a face image under frontal view. It mainly relies on Principle Component Analysis (PCA) to statistically model the variabil...Active Shape Model (ASM) is a powerful statistical tool to extract the facial features of a face image under frontal view. It mainly relies on Principle Component Analysis (PCA) to statistically model the variability in the training set of example shapes. Independent Component Analysis (ICA) has been proven to be more efficient to extract face features than PCA. In this paper, we combine the PCA and ICA by the consecutive strategy to form a novel ASM. Firstly, an initial model, which shows the global shape variability in the training set, is generated by the PCA-based ASM. And then, the final shape model, which contains more local characters, is established by the ICA-based ASM. Experimental results verify that the accuracy of facial feature extraction is statistically significantly improved by applying the ICA modes after the PCA modes.展开更多
文摘Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is based on the assumption of one-dimensional sampling and searching method. In this work a new way to model the gray-level appearance of the objects is explored, using a two-dimensional sampling and searching technique in a rectangular area around each landmark of object shape. The ASM based on this improvement is compared with the original ASM on an identical medical image set for task of spine localization. Experiments demonstrate that the method produces significantly fast, effective, accurate results for spine localization in medical images.
文摘Active Shape Model (ASM) is a powerful statistical tool to extract the facial features of a face image under frontal view. It mainly relies on Principle Component Analysis (PCA) to statistically model the variability in the training set of example shapes. Independent Component Analysis (ICA) has been proven to be more efficient to extract face features than PCA. In this paper, we combine the PCA and ICA by the consecutive strategy to form a novel ASM. Firstly, an initial model, which shows the global shape variability in the training set, is generated by the PCA-based ASM. And then, the final shape model, which contains more local characters, is established by the ICA-based ASM. Experimental results verify that the accuracy of facial feature extraction is statistically significantly improved by applying the ICA modes after the PCA modes.