We demonstrate that power recycling is feasible by using a semi-transparent stripped Al electrode as interconnecting layer to merge a white organic light-emitting devices(WOLED) and an organic photovoltaic(OPV) cell.T...We demonstrate that power recycling is feasible by using a semi-transparent stripped Al electrode as interconnecting layer to merge a white organic light-emitting devices(WOLED) and an organic photovoltaic(OPV) cell.The device is called a PVOLED.It has a glass / ITO / CuPc / m-MTDATA ∶ V 2 O 5 / NPB / CBP ∶ FIrpic ∶ DCJTB / BPhen / LiF / Al / P3HT∶ PCBM / V 2 O 5 / Al structure.The power recycling efficiency of 10.133% is achieved under the WOLED of PVOLED operated at 9 V and at a brightness of 2 110 cd / m 2,when the conversion efficiency of OPV is 2.3%.We have found that the power recycling efficiency is decreased under high brightness and high applied voltage due to an increase input power of WOLED.High efficiency(18.3 cd / A) and high contrast ratio(9.3) were obtained at the device operated at 2 500 cd / m 2 under an ambient illumination of 24 000 lx.Reasonable white light emission with Commission Internationale De L'Eclairage(CIE) color coordinates of(0.32,0.44) at 20 mA / cm 2 and slight color shift occurred in spite of a high current density of 50 mA / cm 2.The proposed PVOLED is highly promising for use in outdoors display applications.展开更多
Abstract:Hybrid inorganic/organic white organic light emitting diodes(hybrid-WOLEDs)are fabricated by combi-ning the blue phosphorescent organic light emitting diodes(PHOLEDs)with red Sr2SiO4:Eu3+phosphor spin coateda...Abstract:Hybrid inorganic/organic white organic light emitting diodes(hybrid-WOLEDs)are fabricated by combi-ning the blue phosphorescent organic light emitting diodes(PHOLEDs)with red Sr2SiO4:Eu3+phosphor spin coatedas a color conversion layer(CCL)over the other side of glass substrate on the devices.The basic configuration of thePHOLEDs consists a host material,N,N'-dicarbazolyl-3,5-benzene(mCP)which doped with a blue phosphorescentiridium complexes iridium(Ⅲ)bis[(4,6-di-fluorophenyl)-pyridinato-N-C2'](FIrpic)to produce high efficient blueorganic light emitting diodes.The hybrid-WOLED shows maximum luminous efficiency of 22.1 cd/A,maximumpower efficiency of 11.26 lm/W,external quantum efficiency of 10.2%and CIE coordinates of(0.32,0.34).Mo-reover,the output spectra and CIE coordinates of the hybrid-WOLED have a small shift in different driving currentdensity,which demonstrate good color stability.展开更多
This work presents novel field emission organic light emitting diodes(FEOLEDs) with dynode,in which an organic EL light-emitting layer is used instead of an inorganic phosphor thin film in the field emission display(F...This work presents novel field emission organic light emitting diodes(FEOLEDs) with dynode,in which an organic EL light-emitting layer is used instead of an inorganic phosphor thin film in the field emission display(FED).The proposed FEOLEDs introduce field emission electrons into organic light emitting diodes(OLEDs),which exhibit a higher luminous efficiency than conventional OLED.The field emission electrons emitted from the carbon nanotubes(CNTs) cathode and to be amplified by impact the dynode in vacuum.These field emission electrons are injected into the multi-layer organic materials of OLED to increase the electron density.Additionally,the proposed FEOLED increase the luminance of OLED from 10 820 cd/m2 to 24 782 cd/m2 by raising the current density of OLED from an external electron source.The role of FEOLED is to add the quantity of electrons-holes pairs in OLED,which increase the exciton and further increase the luminous efficiency of OLED.Under the same operating current density,the FEOLED exhibits a higher luminous efficiency than that of OLED.展开更多
有机发光二极管(Organic light-emitting diodes,OLEDs)作为照明和显示领域极其具有竞争力的技术,近年来备受关注。实现超简单、高效率、低滚降的白光OLEDs,对有机发光层材料的选择至关重要。杂化局部和电荷转移(Hybridized local and c...有机发光二极管(Organic light-emitting diodes,OLEDs)作为照明和显示领域极其具有竞争力的技术,近年来备受关注。实现超简单、高效率、低滚降的白光OLEDs,对有机发光层材料的选择至关重要。杂化局部和电荷转移(Hybridized local and charge transfer,HLCT)材料的“热激子”通道可以将高能三线态激子窜跃至单线态,实现理论上100%的激子利用率,快速的反向系间窜跃可有效抑制三线态激子猝灭,从而降低器件效率滚降。基于此,本文首先通过电荷平衡策略优化器件结构,制备了基于HLCT材料pCzAnN的高效蓝光OLED。在此基础上,以pCzAnN作为传统荧光材料的敏化主体,通过不完全能量传递策略,实现了双色及三色白光OLEDs制备。制备的白光OLEDs最高显色指数达到90,最大外量子效率达到8.76%,且展现出较低效率滚降及良好的光谱稳定性。本研究对开发简单、高效率、低滚降白光OLEDs具有指导意义。展开更多
基金Project supported by NSC(98-2221-E-214-003-MY3 and ISU99-01-06)
文摘We demonstrate that power recycling is feasible by using a semi-transparent stripped Al electrode as interconnecting layer to merge a white organic light-emitting devices(WOLED) and an organic photovoltaic(OPV) cell.The device is called a PVOLED.It has a glass / ITO / CuPc / m-MTDATA ∶ V 2 O 5 / NPB / CBP ∶ FIrpic ∶ DCJTB / BPhen / LiF / Al / P3HT∶ PCBM / V 2 O 5 / Al structure.The power recycling efficiency of 10.133% is achieved under the WOLED of PVOLED operated at 9 V and at a brightness of 2 110 cd / m 2,when the conversion efficiency of OPV is 2.3%.We have found that the power recycling efficiency is decreased under high brightness and high applied voltage due to an increase input power of WOLED.High efficiency(18.3 cd / A) and high contrast ratio(9.3) were obtained at the device operated at 2 500 cd / m 2 under an ambient illumination of 24 000 lx.Reasonable white light emission with Commission Internationale De L'Eclairage(CIE) color coordinates of(0.32,0.44) at 20 mA / cm 2 and slight color shift occurred in spite of a high current density of 50 mA / cm 2.The proposed PVOLED is highly promising for use in outdoors display applications.
基金Project supported by the National Science Council of the Republic of China(101-2221-E-214-016)the financial supporitng of ISU99-01-06the MANALAB at ISU,Taiwan
文摘Abstract:Hybrid inorganic/organic white organic light emitting diodes(hybrid-WOLEDs)are fabricated by combi-ning the blue phosphorescent organic light emitting diodes(PHOLEDs)with red Sr2SiO4:Eu3+phosphor spin coatedas a color conversion layer(CCL)over the other side of glass substrate on the devices.The basic configuration of thePHOLEDs consists a host material,N,N'-dicarbazolyl-3,5-benzene(mCP)which doped with a blue phosphorescentiridium complexes iridium(Ⅲ)bis[(4,6-di-fluorophenyl)-pyridinato-N-C2'](FIrpic)to produce high efficient blueorganic light emitting diodes.The hybrid-WOLED shows maximum luminous efficiency of 22.1 cd/A,maximumpower efficiency of 11.26 lm/W,external quantum efficiency of 10.2%and CIE coordinates of(0.32,0.34).Mo-reover,the output spectra and CIE coordinates of the hybrid-WOLED have a small shift in different driving currentdensity,which demonstrate good color stability.
基金the I-Shou University,Taiwan,for financially supporting this research under Contract No.ISU99-01-06Taiwan Science Council under Contract No.NSC98-2218-E-214-001 and 98-2221-E-214-003-MY3
文摘This work presents novel field emission organic light emitting diodes(FEOLEDs) with dynode,in which an organic EL light-emitting layer is used instead of an inorganic phosphor thin film in the field emission display(FED).The proposed FEOLEDs introduce field emission electrons into organic light emitting diodes(OLEDs),which exhibit a higher luminous efficiency than conventional OLED.The field emission electrons emitted from the carbon nanotubes(CNTs) cathode and to be amplified by impact the dynode in vacuum.These field emission electrons are injected into the multi-layer organic materials of OLED to increase the electron density.Additionally,the proposed FEOLED increase the luminance of OLED from 10 820 cd/m2 to 24 782 cd/m2 by raising the current density of OLED from an external electron source.The role of FEOLED is to add the quantity of electrons-holes pairs in OLED,which increase the exciton and further increase the luminous efficiency of OLED.Under the same operating current density,the FEOLED exhibits a higher luminous efficiency than that of OLED.
文摘有机发光二极管(Organic light-emitting diodes,OLEDs)作为照明和显示领域极其具有竞争力的技术,近年来备受关注。实现超简单、高效率、低滚降的白光OLEDs,对有机发光层材料的选择至关重要。杂化局部和电荷转移(Hybridized local and charge transfer,HLCT)材料的“热激子”通道可以将高能三线态激子窜跃至单线态,实现理论上100%的激子利用率,快速的反向系间窜跃可有效抑制三线态激子猝灭,从而降低器件效率滚降。基于此,本文首先通过电荷平衡策略优化器件结构,制备了基于HLCT材料pCzAnN的高效蓝光OLED。在此基础上,以pCzAnN作为传统荧光材料的敏化主体,通过不完全能量传递策略,实现了双色及三色白光OLEDs制备。制备的白光OLEDs最高显色指数达到90,最大外量子效率达到8.76%,且展现出较低效率滚降及良好的光谱稳定性。本研究对开发简单、高效率、低滚降白光OLEDs具有指导意义。