Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
Ultraviolet(UV)-induced photoaging skin has become an urgent issue.The functional foods and cosmetics aiming to improve skin photoaging are developing rapidly,and the demand is gradually increasing year by year.Collag...Ultraviolet(UV)-induced photoaging skin has become an urgent issue.The functional foods and cosmetics aiming to improve skin photoaging are developing rapidly,and the demand is gradually increasing year by year.Collagen peptides have been proven to display diverse physiological activities,such as excellent moisture retention activity,hygroscopicity,tyrosinase inhibitory activity and antioxidant activity,which indicates that they have great potential in amelioration of UV-induced photoaging.The main objective of this article is to recap the main mechanisms to improve photoaging skin by collagen peptides and their physiological activities in photo-protection.Furthermore,the extraction and structural characteristics of collagen peptides are overviewed.More importantly,some clinical trials on the beneficial effect on skin of collagen peptides are also discussed.In addition,prospects and challenges of collagen peptides are emphatically elucidated in this review.This article implies that collagen peptides have great potential as an effective ingredient in food and cosmetics industry with a wide application prospect.展开更多
Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a cent...Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.展开更多
The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria.As an excellent candidate to overcome antibiotic resistance,antimicrobial pepti...The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria.As an excellent candidate to overcome antibiotic resistance,antimicrobial peptides(AMPs)that are produced from the synthetic and natural sources demonstrate a broad-spectrum antimicrobial activity with the high specificity and low toxicity.These peptides possess distinctive structures and functions by employing sophisticated mechanisms of action.This comprehensive review provides a broad overview of AMPs from the origin,structural characteristics,mechanisms of action,biological activities to clinical applications.We finally discuss the strategies to optimize and develop AMP-based treatment as the potential antimicrobial and anticancer therapeutics.展开更多
Alzheimer’s disease(AD),the major form of neurodegenerative diseases that can severely impede normal cognitive function,makes it one of the most common fatal diseases.There are currently over 50 million AD patients w...Alzheimer’s disease(AD),the major form of neurodegenerative diseases that can severely impede normal cognitive function,makes it one of the most common fatal diseases.There are currently over 50 million AD patients worldwide.The neuropathology of AD is perplexing and there is a scarcity of disease-modifying treatments.Currently,early diagnosis of AD has been made possible with the discovery of biological markers associated with pathology,providing strong support for the improvement of the disease status.The search for inhibitors of AD markers from dietary supplements(DSs)has become a major hot topic.Especially with the widespread use of DSs,DSs containing polyphenols,alkaloids,terpenes,polysaccharides and other bioactive components can prevent AD by reducing Aβdeposition,inhibiting tau protein hyperphosphorylation,reconstructing synaptic dysfunction,weakening cholinesterase activity,regulating mitochondrial oxidative stress,neuronal inflammation and apoptosis.This review summarizes the anti-AD effects of the main DSs and their bioactive constituents,as well as the potential molecular mechanisms covers from 2017 to 2023.Additionally,we discussed the opportunities and challenges faced by DSs in the process of AD prevention and treatment,aiming to further provide new perspectives for functional food development.展开更多
Inflammatory bowel disease(IBD)is characterized by recurrent attacks and long courses,and the number of patients has expanded rapidly year by year.Additionally,current conventional strategies exist serious adverse eff...Inflammatory bowel disease(IBD)is characterized by recurrent attacks and long courses,and the number of patients has expanded rapidly year by year.Additionally,current conventional strategies exist serious adverse effects.In this case,it is an urgent issue to find out an effective and safe treatment.Functional oligosaccharides possess safe and excellent physiological activities,and have attracted enormous attention due to their great therapeutic potential for IBD.This review emphasizes the attenuating effects of distinct functional oligosaccharides on IBD and their structure,and summarizes the main mechanisms from the aspects of regulating intestinal fl ora structure,repairing intestinal barrier,modulating immune function and mediating related signaling pathways in order to reveal the relationship between functional oligosaccharides,immune regulation,intestinal epithelial cells,gut fl ora and IBD treatment.Oligosaccharides possess excellent protective effects on IBD,and can be considered as safe and functional ingredients in the health food and pharmaceutical industry.展开更多
This paper reports that an atmospheric pressure dielectric barrier discharge plasma jet, which uses argon or argon + hydrogen peroxide vapour as the working gas, is designed to sterilize the bacillus subtilis. Compar...This paper reports that an atmospheric pressure dielectric barrier discharge plasma jet, which uses argon or argon + hydrogen peroxide vapour as the working gas, is designed to sterilize the bacillus subtilis. Compared with the pure argon plasma, the bacterial inactivation efficacy has a significant improvement when hydrogen peroxide vapour is added into the plasma jet. In order to determine which factors play the main role in inactivation, several methods are used, such as determination of optical emission spectra, high temperature dry air treatment, protein leakage quantification, and scanning electron microscope. These results indicate that the possible inactivation mechanisms are the synergistic actions of chemically active species and charged species.展开更多
As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promisi...As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs.展开更多
The major royal jelly proteins(MRJPs)are the central constituents responsible for the specific activities of royal jelly.Here MRJPs via oral administration daily for 45 consecutive days were evaluated the effects on t...The major royal jelly proteins(MRJPs)are the central constituents responsible for the specific activities of royal jelly.Here MRJPs via oral administration daily for 45 consecutive days were evaluated the effects on the reproductive parameters in immature female mice(FM).Neonatal FM were divided into four groups fed MRJPs with doses of 0,125,250 and 500 mg/kg/body weight(M125,M250 and M500).The results in M125,M250 and M500 showed that the times of estrus were accelerated by 10.7%,15.5%and 10.7%,the secondary follicles number were increased by 50.7%,78.8%and 38.6%,the Graafian follicles were increased by 600.0%and 774.0%and 150.0%,respectively.M500 induced multi-oocyte follicles.The serum estradiol levels of the three groups were increased by 47.1%,64.9%and 31.1%,the action of MRJPs raising hormone secretion level is mainly via upregulating expression of ERˇgene.Antioxidant parameters of ovarian tissue showed that the malondialdehyde levels in M125 and M250 were decreased,the superoxide dismutase activities and glutathione peroxidase activities in M125 and M250 were increased.In conclusion,MRJPs may accelerate onset of puberty and promote follicular development in FM.Our findings would facilitate better understanding of the benefit effect of MRJPs as the key ingredient in royal jelly on promoting fertility performance.展开更多
Two potential novel environmentally friendly ashless vegetable oil additives, 2-mercaptobenzothiazole derivatives, di-n-dodecyl-[2-(2-benzothiazolyl)thio]ethylborane (LBN) and di-n-dodecylthio-[2-(2-benzothiazoly...Two potential novel environmentally friendly ashless vegetable oil additives, 2-mercaptobenzothiazole derivatives, di-n-dodecyl-[2-(2-benzothiazolyl)thio]ethylborane (LBN) and di-n-dodecylthio-[2-(2-benzothiazolyl) thio]ethylborane (LBNS), were synthesized and their tribological performance as additives in rapeseed oil (RSO) was evaluated using a four-ball wear tester. Their anti-corrosive properties and thermal stability were also examined. The worn surface of the steel ball was analyzed by means of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results showed that 2-mercaptobenzothiazole derivatives exhibited excellent anti-corrosive property and high thermal stability. Moreover, they both had good load-carrying capacities and anti-wear and friction-reducing properties. The PR values of samples decreased in the following order: LBNS〉 LBN〉RSO. The results of XPS examination illustrated that the excellent tribological behavior of the prepared compounds used as additives in RSO was attributed to the formation of a protective lubrication film on the worn surface, which consisted of an adsorption layer and a reaction layer containing Fe3O4, FeS, Fe2(SO4)3, FeB, and organic nitrogen-containing compounds.展开更多
High nitrogen stainless steel with nitrogen content of 0.75%was welded by gas metal arc welding with Ar-N_(2)-O_(2)ternary shielding gas.The effect of the ternary shielding gas on the retention and improvement of nitr...High nitrogen stainless steel with nitrogen content of 0.75%was welded by gas metal arc welding with Ar-N_(2)-O_(2)ternary shielding gas.The effect of the ternary shielding gas on the retention and improvement of nitrogen content in the weld was identified.Surfacing test was conducted first to compare the ability of O_(2)and CO_(2)in prompting nitrogen dissolution.The nitrogen content of the surfacing metal with O_(2)is slightly higher than CO_(2).And then AreN_(2)-O_(2)shielding gas was applied to weld high nitrogen stainless steel.After using N_(2)-containing shielding gas,the nitrogen content of the weld was improved by 0.1 wt%.As N_(2)continued to increase,the increment of nitrogen content was not obvious,but the ferrite decreased from the top to the bottom.When the proportion of N_(2)reached 20%,a full austenitic weld was obtained and the tensile strength was improved by 8.7%.Combined with the results of surfacing test and welding test,it is concluded that the main effect of N_(2)is to inhibit the escape of nitrogen and suppress the nitrogen diffusion from bottom to the top in the molten pool.展开更多
On the basis of analyzing the fluid phase behavior during the transformation from gas reservoir to gas storage,a mathematical model and an experimental simulation method are established to describe the oil-gas phase b...On the basis of analyzing the fluid phase behavior during the transformation from gas reservoir to gas storage,a mathematical model and an experimental simulation method are established to describe the oil-gas phase behavior during the whole injection-production process of gas storage.The underground gas storage in the Liaohe Shuang 6 gas reservoir with oil rim is taken as a typical example to verify the reliability and accuracy of the mathematical model and reveal characteristics and mechanisms of fluid phase behavior.In the gas injection stage of the gas storage,the phase behavior is characterized by mainly evaporation and extraction and secondarily dissolution and diffusion of gas in the cap to oil in the oil rim of the reservoir;the gas in gas cap increases in light component content,decreases in contents of intermediate and heavy components,and increases in density and viscosity.The oil of the ring decreases in content of heavy components,increases in contents of light and intermediate components,decreases in density and viscosity,and increases in volume factor and solution gas oil ratio.In the stable operation stage of periodic injection-production of gas storage,the phase behavior shows that the evaporation and extraction capacity of injection gas in the cap to oil rim is weakened step by step,the phase behavior gradually changes into dissolution and diffusion.The gas in gas cap decreases in content of intermediate components,increases in content of light components slowly,and becomes lighter;but changes hardly in density and viscosity.The oil in the oil rim increases in content of heavy components,decreases in content of intermediate components,rises in density and viscosity,and drops in volume factor and solution gas oil ratio.展开更多
By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,me...By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,mechanical interlocking,and electrostatic adsorption,are expounded.The research status of these materials in oil and gas drilling and production engineering field such as lost circulation prevention/control,wellbore stabilization,hydraulic fracturing,and profile control and water plugging,and their application challenges and prospects in oil and gas drilling and production are introduced comprehensively.According to the applications of functional adhesive materials in the field of oil and gas drilling and production at this stage,the key research directions of functional adhesive materials in the area of oil and gas drilling and production are proposed:(1)blending and modifying thermoplastic resins or designing curable thermoplastic resins to improve the bonding performance and pressure bearing capacity of adhesive lost circulation materials;(2)introducing low-cost adhesive groups and positive charge structures into polymers to reduce the cost of wellbore strengthening agents and improve their adhesion performance on the wellbore;(3)introducing thermally reversible covalent bond into thermosetting resin to prevent backflow of proppant and improve the compressive strength of adhesive proppant;(4)introducing thermally reversible covalent bonds into thermoplastic polymers to improve the temperature resistance,salt-resistance and water shutoff performance of adhesive water shutoff agents.展开更多
Disturbance effect is one of the important factors for wind damage to large cooling towers.Existing studies on the wind-induced interference of cooling tower groups are aimed at the same size and the lack of wind-indu...Disturbance effect is one of the important factors for wind damage to large cooling towers.Existing studies on the wind-induced interference of cooling tower groups are aimed at the same size and the lack of wind-induced interference effects between cooling towers of different sizes.With the background of the additional cooling tower project at Shandong Luxi Power Plant in China,the rigid body pressure wind tunnel test is carried out to obtain 194 conditions for the three combinations of the existing four-tower combination(small size),the new two-tower combination(large size)and the six-tower combination surface wind pressure distribution.Numerical simulation of the surrounding flow field of the cooling tower group with the most unfavorable interference condition of the six-tower combination is conducted using the computational fluid dynamics(CFD)method.Based on this,the characteristics of the average and pulsating wind pressure distribution of the cooling tower surface under the six-tower combination are mainly studied,and the load interference coefficients of the large-sized cooling tower and the small-sized cooling tower under the three tower group combinations are compared.The velocity flow field and vorticity changes around the cooling tower group at unfavorable wind angles are analyzed,and the wind-induced interference mechanism between cooling tower groups of different sizes is mainly refined.Research shows that the interference effect between such cooling tower groups of different sizes is much larger than that of cooling tower groups of the same size,which is specifically manifested as the enhancement effect of small-sized cooling towers and the shielding effect of large-sized cooling towers.The interference coefficient of large-sized cooling tower groups increases by 28%,and the interference coefficient of small-sized cooling tower groups decreases by 6.4%.The airflow acceleration caused by the pinch effect between small-sized cooling tower groups has an adverse effect on large-sized cooling towers and can significantly increase the magnitude of local wind load.The shielding effect of large-sized cooling towers can reduce the overall wind load of small-sized cooling towers.The research conclusions can provide the basis of wind load value design for wind resistance design of such large cooling tower addition projects.展开更多
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
基金financially supported by National Key R&D Program of China(No.2016YFD0400200)National Natural Science Foundation of China(No.31972102,31671881,and 31901683)+4 种基金Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2018jcyj A0939)Chongqing Technology Innovation and Application Demonstration Project(No.cstc2018jscx-msyb X0204)Fundamental Research Funds for the Central Universities(No.XDJK2019B028)Innovation Program for Chongqing’s Overseas Returnees(cx2019072)Fundamental Research Funds for the Central Universities,China(SWU 019009)。
文摘Ultraviolet(UV)-induced photoaging skin has become an urgent issue.The functional foods and cosmetics aiming to improve skin photoaging are developing rapidly,and the demand is gradually increasing year by year.Collagen peptides have been proven to display diverse physiological activities,such as excellent moisture retention activity,hygroscopicity,tyrosinase inhibitory activity and antioxidant activity,which indicates that they have great potential in amelioration of UV-induced photoaging.The main objective of this article is to recap the main mechanisms to improve photoaging skin by collagen peptides and their physiological activities in photo-protection.Furthermore,the extraction and structural characteristics of collagen peptides are overviewed.More importantly,some clinical trials on the beneficial effect on skin of collagen peptides are also discussed.In addition,prospects and challenges of collagen peptides are emphatically elucidated in this review.This article implies that collagen peptides have great potential as an effective ingredient in food and cosmetics industry with a wide application prospect.
基金supported by the National Natural Science Foundation of China,China(52203066,51973157,51673148 and 51678411)the Science and Technology Plans of Tianjin,China(19PTSYJC00010)+3 种基金China Postdoctoral Science Foundation Grant,China(2019M651047)the Tianjin Research Innovation Project for Postgraduate Students,China(2020YJSB062)the Tianjin Municipal College Student’Innovation And Entrepreneurship Training Program,China(202110058052)the National Innovation and Entrepreneurship Training Program for College Students,China(202110058017)。
文摘Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.
基金supported by grants from the National Natural Science Foundation of China (81770176)the special support plan for Zhejiang Province High-Level Talents (2019R52011)。
文摘The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria.As an excellent candidate to overcome antibiotic resistance,antimicrobial peptides(AMPs)that are produced from the synthetic and natural sources demonstrate a broad-spectrum antimicrobial activity with the high specificity and low toxicity.These peptides possess distinctive structures and functions by employing sophisticated mechanisms of action.This comprehensive review provides a broad overview of AMPs from the origin,structural characteristics,mechanisms of action,biological activities to clinical applications.We finally discuss the strategies to optimize and develop AMP-based treatment as the potential antimicrobial and anticancer therapeutics.
基金financially supported by the National Key R&D Program of China(2022YFF1100301)Yunnan Revitalization Talents Support Plan-Young Talent Project(YNWRQNBJ-2018-357)。
文摘Alzheimer’s disease(AD),the major form of neurodegenerative diseases that can severely impede normal cognitive function,makes it one of the most common fatal diseases.There are currently over 50 million AD patients worldwide.The neuropathology of AD is perplexing and there is a scarcity of disease-modifying treatments.Currently,early diagnosis of AD has been made possible with the discovery of biological markers associated with pathology,providing strong support for the improvement of the disease status.The search for inhibitors of AD markers from dietary supplements(DSs)has become a major hot topic.Especially with the widespread use of DSs,DSs containing polyphenols,alkaloids,terpenes,polysaccharides and other bioactive components can prevent AD by reducing Aβdeposition,inhibiting tau protein hyperphosphorylation,reconstructing synaptic dysfunction,weakening cholinesterase activity,regulating mitochondrial oxidative stress,neuronal inflammation and apoptosis.This review summarizes the anti-AD effects of the main DSs and their bioactive constituents,as well as the potential molecular mechanisms covers from 2017 to 2023.Additionally,we discussed the opportunities and challenges faced by DSs in the process of AD prevention and treatment,aiming to further provide new perspectives for functional food development.
基金financially supported by Sichuan Science and Technology Program[2021YFSY0035]Heilongjiang Touyan Team[HITTY-20190034].
文摘Inflammatory bowel disease(IBD)is characterized by recurrent attacks and long courses,and the number of patients has expanded rapidly year by year.Additionally,current conventional strategies exist serious adverse effects.In this case,it is an urgent issue to find out an effective and safe treatment.Functional oligosaccharides possess safe and excellent physiological activities,and have attracted enormous attention due to their great therapeutic potential for IBD.This review emphasizes the attenuating effects of distinct functional oligosaccharides on IBD and their structure,and summarizes the main mechanisms from the aspects of regulating intestinal fl ora structure,repairing intestinal barrier,modulating immune function and mediating related signaling pathways in order to reveal the relationship between functional oligosaccharides,immune regulation,intestinal epithelial cells,gut fl ora and IBD treatment.Oligosaccharides possess excellent protective effects on IBD,and can be considered as safe and functional ingredients in the health food and pharmaceutical industry.
基金Project supported by the Science Foundation of Hefei Institutes of Physical Science, Chinese Academy of Sciences (Grant No. 085FZ10134)
文摘This paper reports that an atmospheric pressure dielectric barrier discharge plasma jet, which uses argon or argon + hydrogen peroxide vapour as the working gas, is designed to sterilize the bacillus subtilis. Compared with the pure argon plasma, the bacterial inactivation efficacy has a significant improvement when hydrogen peroxide vapour is added into the plasma jet. In order to determine which factors play the main role in inactivation, several methods are used, such as determination of optical emission spectra, high temperature dry air treatment, protein leakage quantification, and scanning electron microscope. These results indicate that the possible inactivation mechanisms are the synergistic actions of chemically active species and charged species.
基金Tianjin Natural Science Foundation (23JCYBJC00660)Tianjin Enterprise Science and Technology Commissioner Project (23YDTPJC00490)+4 种基金National Natural Science Foundation of China (52203066, 51973157, 61904123)China Postdoctoral Science Foundation Grant (2023M742135)National innovation and entrepreneurship training program for college students (202310058007)Tianjin Municipal college students’ innovation and entrepreneurship training program (202310058088)State Key Laboratory of Membrane and Membrane Separation, Tiangong University。
文摘As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs.
基金The authors are grateful to Dr.Quanwei Wei from Nanjing Agricultural University,Nanjing,China for his technical assistance.This work was supported by the National Natural Science Foundation of China(no.31271848)。
文摘The major royal jelly proteins(MRJPs)are the central constituents responsible for the specific activities of royal jelly.Here MRJPs via oral administration daily for 45 consecutive days were evaluated the effects on the reproductive parameters in immature female mice(FM).Neonatal FM were divided into four groups fed MRJPs with doses of 0,125,250 and 500 mg/kg/body weight(M125,M250 and M500).The results in M125,M250 and M500 showed that the times of estrus were accelerated by 10.7%,15.5%and 10.7%,the secondary follicles number were increased by 50.7%,78.8%and 38.6%,the Graafian follicles were increased by 600.0%and 774.0%and 150.0%,respectively.M500 induced multi-oocyte follicles.The serum estradiol levels of the three groups were increased by 47.1%,64.9%and 31.1%,the action of MRJPs raising hormone secretion level is mainly via upregulating expression of ERˇgene.Antioxidant parameters of ovarian tissue showed that the malondialdehyde levels in M125 and M250 were decreased,the superoxide dismutase activities and glutathione peroxidase activities in M125 and M250 were increased.In conclusion,MRJPs may accelerate onset of puberty and promote follicular development in FM.Our findings would facilitate better understanding of the benefit effect of MRJPs as the key ingredient in royal jelly on promoting fertility performance.
基金supported financially by the PLA General Logistics Department
文摘Two potential novel environmentally friendly ashless vegetable oil additives, 2-mercaptobenzothiazole derivatives, di-n-dodecyl-[2-(2-benzothiazolyl)thio]ethylborane (LBN) and di-n-dodecylthio-[2-(2-benzothiazolyl) thio]ethylborane (LBNS), were synthesized and their tribological performance as additives in rapeseed oil (RSO) was evaluated using a four-ball wear tester. Their anti-corrosive properties and thermal stability were also examined. The worn surface of the steel ball was analyzed by means of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results showed that 2-mercaptobenzothiazole derivatives exhibited excellent anti-corrosive property and high thermal stability. Moreover, they both had good load-carrying capacities and anti-wear and friction-reducing properties. The PR values of samples decreased in the following order: LBNS〉 LBN〉RSO. The results of XPS examination illustrated that the excellent tribological behavior of the prepared compounds used as additives in RSO was attributed to the formation of a protective lubrication film on the worn surface, which consisted of an adsorption layer and a reaction layer containing Fe3O4, FeS, Fe2(SO4)3, FeB, and organic nitrogen-containing compounds.
文摘High nitrogen stainless steel with nitrogen content of 0.75%was welded by gas metal arc welding with Ar-N_(2)-O_(2)ternary shielding gas.The effect of the ternary shielding gas on the retention and improvement of nitrogen content in the weld was identified.Surfacing test was conducted first to compare the ability of O_(2)and CO_(2)in prompting nitrogen dissolution.The nitrogen content of the surfacing metal with O_(2)is slightly higher than CO_(2).And then AreN_(2)-O_(2)shielding gas was applied to weld high nitrogen stainless steel.After using N_(2)-containing shielding gas,the nitrogen content of the weld was improved by 0.1 wt%.As N_(2)continued to increase,the increment of nitrogen content was not obvious,but the ferrite decreased from the top to the bottom.When the proportion of N_(2)reached 20%,a full austenitic weld was obtained and the tensile strength was improved by 8.7%.Combined with the results of surfacing test and welding test,it is concluded that the main effect of N_(2)is to inhibit the escape of nitrogen and suppress the nitrogen diffusion from bottom to the top in the molten pool.
基金Supported by Scientific Research and Technology Development Project of PetroChina(KT2019-02-04,2021DJ1001).
文摘On the basis of analyzing the fluid phase behavior during the transformation from gas reservoir to gas storage,a mathematical model and an experimental simulation method are established to describe the oil-gas phase behavior during the whole injection-production process of gas storage.The underground gas storage in the Liaohe Shuang 6 gas reservoir with oil rim is taken as a typical example to verify the reliability and accuracy of the mathematical model and reveal characteristics and mechanisms of fluid phase behavior.In the gas injection stage of the gas storage,the phase behavior is characterized by mainly evaporation and extraction and secondarily dissolution and diffusion of gas in the cap to oil in the oil rim of the reservoir;the gas in gas cap increases in light component content,decreases in contents of intermediate and heavy components,and increases in density and viscosity.The oil of the ring decreases in content of heavy components,increases in contents of light and intermediate components,decreases in density and viscosity,and increases in volume factor and solution gas oil ratio.In the stable operation stage of periodic injection-production of gas storage,the phase behavior shows that the evaporation and extraction capacity of injection gas in the cap to oil rim is weakened step by step,the phase behavior gradually changes into dissolution and diffusion.The gas in gas cap decreases in content of intermediate components,increases in content of light components slowly,and becomes lighter;but changes hardly in density and viscosity.The oil in the oil rim increases in content of heavy components,decreases in content of intermediate components,rises in density and viscosity,and drops in volume factor and solution gas oil ratio.
基金Supported by National Natural Science Foundation of China(51991361,52074327)Major Engineering Technology Field Test Project of CNPC(2020F-45)。
文摘By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,mechanical interlocking,and electrostatic adsorption,are expounded.The research status of these materials in oil and gas drilling and production engineering field such as lost circulation prevention/control,wellbore stabilization,hydraulic fracturing,and profile control and water plugging,and their application challenges and prospects in oil and gas drilling and production are introduced comprehensively.According to the applications of functional adhesive materials in the field of oil and gas drilling and production at this stage,the key research directions of functional adhesive materials in the area of oil and gas drilling and production are proposed:(1)blending and modifying thermoplastic resins or designing curable thermoplastic resins to improve the bonding performance and pressure bearing capacity of adhesive lost circulation materials;(2)introducing low-cost adhesive groups and positive charge structures into polymers to reduce the cost of wellbore strengthening agents and improve their adhesion performance on the wellbore;(3)introducing thermally reversible covalent bond into thermosetting resin to prevent backflow of proppant and improve the compressive strength of adhesive proppant;(4)introducing thermally reversible covalent bonds into thermoplastic polymers to improve the temperature resistance,salt-resistance and water shutoff performance of adhesive water shutoff agents.
基金supported in part by the National Natural Science Foundations(Nos. 51878351, U1733129,51761165022)the Outstanding Youth Fund of Jiangsu Natural Science Foundation(No. BK20160083).
文摘Disturbance effect is one of the important factors for wind damage to large cooling towers.Existing studies on the wind-induced interference of cooling tower groups are aimed at the same size and the lack of wind-induced interference effects between cooling towers of different sizes.With the background of the additional cooling tower project at Shandong Luxi Power Plant in China,the rigid body pressure wind tunnel test is carried out to obtain 194 conditions for the three combinations of the existing four-tower combination(small size),the new two-tower combination(large size)and the six-tower combination surface wind pressure distribution.Numerical simulation of the surrounding flow field of the cooling tower group with the most unfavorable interference condition of the six-tower combination is conducted using the computational fluid dynamics(CFD)method.Based on this,the characteristics of the average and pulsating wind pressure distribution of the cooling tower surface under the six-tower combination are mainly studied,and the load interference coefficients of the large-sized cooling tower and the small-sized cooling tower under the three tower group combinations are compared.The velocity flow field and vorticity changes around the cooling tower group at unfavorable wind angles are analyzed,and the wind-induced interference mechanism between cooling tower groups of different sizes is mainly refined.Research shows that the interference effect between such cooling tower groups of different sizes is much larger than that of cooling tower groups of the same size,which is specifically manifested as the enhancement effect of small-sized cooling towers and the shielding effect of large-sized cooling towers.The interference coefficient of large-sized cooling tower groups increases by 28%,and the interference coefficient of small-sized cooling tower groups decreases by 6.4%.The airflow acceleration caused by the pinch effect between small-sized cooling tower groups has an adverse effect on large-sized cooling towers and can significantly increase the magnitude of local wind load.The shielding effect of large-sized cooling towers can reduce the overall wind load of small-sized cooling towers.The research conclusions can provide the basis of wind load value design for wind resistance design of such large cooling tower addition projects.