Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor strugg...Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy.展开更多
Increasing temperatures and severe droughts threaten forest vitality globally.Prediction of forest response to climate change requires knowledge of the spatiotemporal patterns of monthly or seasonal climatic impacts o...Increasing temperatures and severe droughts threaten forest vitality globally.Prediction of forest response to climate change requires knowledge of the spatiotemporal patterns of monthly or seasonal climatic impacts on the growth of tree species,likely driven by local climatic aridity,climate trends,edaphic conditions,and the climatic adaption of tree species.The ability of tree species to cope with changing climate and the effects of environmental variables on growth trends and growth-climate relationships across diverse bioclimatic regions are still poorly understood for many species.This study investigated radial growth trends,interannual growth variability,and growth-climate sensitivity of two dominant tree species,Pinus tabulaeformis(PT)and Pinus sylvestris var.mongolica(PS),across a broad climatic gradient with a variety of soil properties in temperate Northern China.Using a network of 83 tree ring chronologies(54 for PT and 29 for PS)from 1971 to 2010,we documented that both species maintained constant growth trends at wet sites,while both displayed rapid declines at dry sites.We reported the species-specific drivers of spatial heterogeneity in growth trends,interannual growth variability,and growth-climate relationships.Calculated climatic variables and soil properties were identified as the most critical factors affecting the growth trends and growth-climate relationships.However,climatic variables play more essential roles than soil properties in determining the spatial heterogeneity of the growth-climate relationship.Lower clay content and higher soil nutrient regimes can exacerbate the moisture-related susceptibility of tree growth.Our findings highlight that soil properties emerged as important modulating factors to predict the drought vulnerability of forests in addition to climatic variables.Considering the continued climate warmingdrying trend in the future,both pines will face a more severe growth decline and increase in drought vulnerability at drier sites with lower clayed soil or higher nutrient regimes.展开更多
Let(X,T)be a linear dynamical system,where X is a Banach space and T:X→X is a bounded linear operator.This paper obtains that(X,T)is sensitive(Li-Yorke sensitive,mean sensitive,syndetically mean sensitive,respectivel...Let(X,T)be a linear dynamical system,where X is a Banach space and T:X→X is a bounded linear operator.This paper obtains that(X,T)is sensitive(Li-Yorke sensitive,mean sensitive,syndetically mean sensitive,respectively)if and only if(X,T)is Banach mean sensitive(Banach mean Li-Yorke sensitive,thickly multi-mean sensitive,thickly syndetically mean sensitive,respectively).Several examples are provided to distinguish between different notions of mean sensitivity,syndetic mean sensitivi`ty and mean Li-Yorke sensitivity.展开更多
The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively...The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages.展开更多
The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft...The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.展开更多
We focus on the Mach–Zehnder interferometer(MZI) with the input of a coherent beam and one of the bright entangled twin beams with an external power reference beam employed for measurement. The results show that the ...We focus on the Mach–Zehnder interferometer(MZI) with the input of a coherent beam and one of the bright entangled twin beams with an external power reference beam employed for measurement. The results show that the phase sensitivity can reach sub-Heisenberg limit and approach quantum Cramer–Rao bound by changing the squeezing parameters and the photon number of the coherent beam, under the phase-matching condition. The absence of the external power reference beam will degrade the performance of the phase sensitivity. Meanwhile, this scheme shows good robustness against the losses of the photon detectors. We present a detailed discussion about the phase sensitivities when the inputs are two coherent beams, or a coherent beam plus a single-mode squeezed vacuum beam based on the MZI. This scenario can be applied in the field of phase precision measurements and other optical sensors.展开更多
Circuit sensitivity of sensors or tags without battery is one practical constraint for ambient backscatter communication systems.This letter considers using beamforming to reduce the sensitivity constraint and evaluat...Circuit sensitivity of sensors or tags without battery is one practical constraint for ambient backscatter communication systems.This letter considers using beamforming to reduce the sensitivity constraint and evaluates the corresponding performance in terms of the tag activation distance and the system capacity.Specifically,we derive the activation probabilities of the tag in the case of single-antenna and multi-antenna transmitters.Besides,we obtain the capacity expressions for the ambient backscatter communication system with beamforming and illustrate the power allocation that maximizes the system capacity when the tag is activated.Finally,simulation results are provided to corroborate our proposed studies.展开更多
During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and...During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.展开更多
Research on reservoir rock stress sensitivity has traditionally focused on unary granular structures,neglecting the binary nature of real reservoirs,especially tight reservoirs.Understanding the stresssensitive behavi...Research on reservoir rock stress sensitivity has traditionally focused on unary granular structures,neglecting the binary nature of real reservoirs,especially tight reservoirs.Understanding the stresssensitive behavior and mathematical characterization of binary granular media remains a challenging task.In this study,we conducted online-NMR experiments to investigate the permeability and porosity evolution as well as stress-sensitive control mechanisms in tight sandy conglomerate samples.The results revealed stress sensitivity coefficients between 0.042 and 0.098 and permeability damage rates ranging from 65.6%to 90.9%,with an average pore compression coefficient of 0.0168—0.0208 MPa 1.Pore-scale compression occurred in three stages:filling,compression,and compaction,with matrix pores playing a dominant role in pore compression.The stress sensitivity of binary granular media was found to be influenced by the support structure and particle properties.High stress sensitivity was associated with small fine particle size,high fines content,high uniformity coefficient of particle size,high plastic deformation,and low Young's modulus.Matrix-supported samples exhibited a high irreversible permeability damage rate(average=74.2%)and stress sensitivity coefficients(average=0.089),with pore spaces more slit-like.In contrast,grain-supported samples showed low stress sensitivity coefficients(average=0.021)at high stress stages.Based on the experiments,we developed a mathematical model for stress sensitivity in binary granular media,considering binary granular properties and nested interactions using Hertz contact deformation and Poiseuille theory.By describing the change in activity content of fines under stress,we characterized the non-stationary state of compressive deformation in the binary granular structure and classified the reservoir into three categories.The model was applied for production prediction using actual data from the Mahu reservoir in China,showing that the energy retention rates of support-dominated,fill-dominated,and matrix-controlled reservoirs should be higher than 70.1%,88%,and 90.2%,respectively.展开更多
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce...The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce considerable uncertainty.Therefore,in recent years,the field of severe accidents has shifted its focus toward applying uncertainty analysis methods to quantify uncertainty in safety assessment programs,known as“best estimate plus uncertainty(BEPU).”This approach aids in enhancing our comprehension of these programs and their further development and improvement.This study concentrates on a third-generation pressurized water reactor equipped with advanced active and passive mitigation strategies.Through an Integrated Severe Accident Analysis Program(ISAA),numerical modeling and uncertainty analysis were conducted on severe accidents resulting from large break loss of coolant accidents.Seventeen uncertainty parameters of the ISAA program were meticulously screened.Using Wilks'formula,the developed uncertainty program code,SAUP,was employed to carry out Latin hypercube sampling,while ISAA was employed to execute batch calculations.Statistical analysis was then conducted on two figures of merit,namely hydrogen generation and the release of fission products within the pressure vessel.Uncertainty calculations revealed that hydrogen production and the fraction of fission product released exhibited a normal distribution,ranging from 182.784 to 330.664 kg and from 15.6 to 84.3%,respectively.The ratio of hydrogen production to reactor thermal power fell within the range of 0.0578–0.105.A sensitivity analysis was performed for uncertain input parameters,revealing significant correlations between the failure temperature of the cladding oxide layer,maximum melt flow rate,size of the particulate debris,and porosity of the debris with both hydrogen generation and the release of fission products.展开更多
In the field of rail transit,the UK Department of Transport stated that it will realize a comprehensive transformation of UK railways by 2050,abandoning traditional diesel trains and upgrading them to new environmenta...In the field of rail transit,the UK Department of Transport stated that it will realize a comprehensive transformation of UK railways by 2050,abandoning traditional diesel trains and upgrading them to new environmentally friendly trains.The current mainstream upgrade methods are electrification and hydrogen fuel cells.Comprehensive upgrades are costly,and choosing the optimal upgrade method for trams and mainline railways is critical.Without a sensitivity analysis,it is difficult for us to determine the influence relationship between each parameter and cost,resulting in a waste of cost when choosing a line reconstruction method.In addition,by analyzing the sensitivity of different parameters to the cost,the primary optimization direction can be determined to reduce the cost.Global higher-order sensitivity analysis enables quantification of parameter interactions,showing non-additive effects between parameters.This paper selects the main parameters that affect the retrofit cost and analyzes the retrofit cost of the two upgrade methods in the case of trams and mainline railways through local and global sensitivity analysis methods.The results of the analysis show that,given the current UK rail system,it is more economical to choose electric trams and hydrogen mainline trains.For trams,the speed at which the train travels has the greatest impact on the final cost.Through the sensitivity analysis,this paper provides an effective data reference for the current railway upgrading and reconstruction plan and provides a theoretical basis for the next step of train parameter optimization.展开更多
KeLa-2 gas reservoir is the largest uncompartimentalized gas field so far discovered in China, with a reserve of hundreds of billions of cubic meters of dry gas. It has such features as extremely long interval (550m)...KeLa-2 gas reservoir is the largest uncompartimentalized gas field so far discovered in China, with a reserve of hundreds of billions of cubic meters of dry gas. It has such features as extremely long interval (550m), high pressure (74.5MPa) and pressure coefficient (2.022). Gas reservoirs with a pressure coefficient of over 2.0 are not commonly found. The abnormal high-pressure reservoirs are quite different in characteristic and performance during the process of depletion exploitation. Therefore, it is necessary to know the property of pressure sensitivity for this abnormal high-pressure reservoir. The aim of this paper is to test the reservoir pressure sensitivity and to analyze its effect on the deliverability of gas. Through some experiments, the permeability change with the confining pressure of rock samples from KeLa-2 abnormal high-pressure gas reservoir is measured. A power function is used to match the measured data, and to derive an empirical equation to describe the change of permeability through the change of the reservoir pressure or effective overburden pressure. Considering the permeability change during the development of reservoirs, a conventional deliverability equation is modified, and the deliverability curve for KeLa-2 gas reservoir is predicted. The research indicates that the extent of the pressure sensitivity of rock samples from KeLa-2 is higher than that from the Daqing oilfield. KeLa-2 reservoir rock has the feature of an undercompaction state. The pressure sensitivity of a reservoir may decrease the well deliverability. It is concluded that for KeLa-2 reservoir the predicted absolute open flow (AOF), when the pressure sensitivity is taken into account, is approximately 70% of the AOF when permeability is constant and does not change with pressure.展开更多
For complicated geometries, it is ineflicient to integrate over the entire domain. A new approach for optimization is presented here, based on sensitivity analysis of local do- main and deformation of full domain. Acc...For complicated geometries, it is ineflicient to integrate over the entire domain. A new approach for optimization is presented here, based on sensitivity analysis of local do- main and deformation of full domain. Accurate results of design sensitivity analysis are ob- tained with this approach in shape optimization. This method is shown to be efficient when used in optimization programs and results in less distortion of the mesh.展开更多
For a detector in a capacitanee fuze working in an electrostatic field, the bomblength (effective length of the conductor part) is an important factor affecting the sensitivityof detection. For the two different kinds...For a detector in a capacitanee fuze working in an electrostatic field, the bomblength (effective length of the conductor part) is an important factor affecting the sensitivityof detection. For the two different kinds of detecting circuit models in general use (the frequency-sensitive and the amplitude-coupling ), mechanism of the effect of bomblength on the sensitvity of detection is analyzed. Through the analysis a conclusion in fullagreement with experimental results has been drawn, that is. the longer the bomb length,the higher the sensitivity, on the condition that the sizes and the sites of the detecting electrodes and bomb diameter remain unchanged.展开更多
Intercultural Communication Competence (ICC), as one of the research fields of intercultural communication, has been given much importance from scholars all around the world. Intercultural sensitivity is one of the th...Intercultural Communication Competence (ICC), as one of the research fields of intercultural communication, has been given much importance from scholars all around the world. Intercultural sensitivity is one of the three dimensions in Dr Chen's ICC model. This research investigates the reliability and validity of Chen and Starosta's Intercultural Sensitivity Scale (ISS) (2000) against Chinese cultural background by using Chinese university students majoring in English as respondents.展开更多
Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the...Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the measurement. In this paper, experiments on the Kaiser effect in limestones were performed, and it was found that the limestones had good ability to retain a memory of their recent stress history and high time-sensitivity. The longer the experiment was delayed from the extraction of the stone, the larger the Felicity ratio was. As the Felicity ratio approached l, significant Kaiser effect was observed. In-situ stress should be determined by the limestone measurements when the delay time was 40-120 days. Finally, the in-situ stress in a limestone formation could be successfully measured in practice.展开更多
Interaction of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)/ammonium perchlorate(AP) and its effect on mechanical sensitivity may result in some restrictions for the application of AP/HMX system in high energetic weapo...Interaction of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)/ammonium perchlorate(AP) and its effect on mechanical sensitivity may result in some restrictions for the application of AP/HMX system in high energetic weapon system. In this work, impact sensitivity test is used to study the effects of wax coating of HMX, AP and aluminum(Al) powder on sensitivity properties of HMX/AP/Al mixtures.Thermogravimetry-differential scanning calorimetry(TG-DSC) analysis has been developed to investigate the mechanism of interaction between HMX and AP during the course of thermal decomposition of HMX/AP/AI mixtures. The results show that severe interaction effect exists between AP and HMX, which causes the impact sensitivity(H_(50)) to become smaller. The impact energy(E_(50)) of mixture can be improved under the circumstances of effective separating HMX from AP by surface coating with Wax. AP may firstly engender low-temperature decomposition under the circumstance of external heat or mechanical impact, which causes the exothermic peak of HMX forward shift about 28 C. The gaseous product releasing from thermal decomposition of HMX accelerates further decomposition of AP. For HMX/AP composite system, the interactive catalysis effect between AP and HMX can be eliminated mostly by adding a great deal of Al powder(i.e. above 30%).展开更多
Fast neutron radiography(FNR) is an effective non-destructive testing technique.Due to the scattering effect and low detection efficiency,the detection limit of FNR under certain conditions cannot be determined.In ord...Fast neutron radiography(FNR) is an effective non-destructive testing technique.Due to the scattering effect and low detection efficiency,the detection limit of FNR under certain conditions cannot be determined.In order to obtain the minimum detectable thickness by FNR,we studied the contrast sensitivity of FNR lead samples,both theoretically and experimentally.We then clarified the relationship between pixel value and irradiation time,and sample materials and thickness.Our experiment,using a4-cm-thick lead sample,verified our theoretical expression of FNR contrast sensitivity.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2022YFA1205300 and No.2022YFA1205304)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2022ZD103).
文摘Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy.
基金funded by the National Key Research and Development Plan of China(No.2022YFE0127900)the National Natural Science Foundation of China(Nos.32071558,32171559)+2 种基金the Natural Science Foundation Key Project of Inner Mongolia Autonomous Region,China(No.2023ZD23)the Hulunbuir Science and Technology Plan Project(No.SF2022001)the Fundamental Research Funds of CAF(CAFYBB2023ZA002).
文摘Increasing temperatures and severe droughts threaten forest vitality globally.Prediction of forest response to climate change requires knowledge of the spatiotemporal patterns of monthly or seasonal climatic impacts on the growth of tree species,likely driven by local climatic aridity,climate trends,edaphic conditions,and the climatic adaption of tree species.The ability of tree species to cope with changing climate and the effects of environmental variables on growth trends and growth-climate relationships across diverse bioclimatic regions are still poorly understood for many species.This study investigated radial growth trends,interannual growth variability,and growth-climate sensitivity of two dominant tree species,Pinus tabulaeformis(PT)and Pinus sylvestris var.mongolica(PS),across a broad climatic gradient with a variety of soil properties in temperate Northern China.Using a network of 83 tree ring chronologies(54 for PT and 29 for PS)from 1971 to 2010,we documented that both species maintained constant growth trends at wet sites,while both displayed rapid declines at dry sites.We reported the species-specific drivers of spatial heterogeneity in growth trends,interannual growth variability,and growth-climate relationships.Calculated climatic variables and soil properties were identified as the most critical factors affecting the growth trends and growth-climate relationships.However,climatic variables play more essential roles than soil properties in determining the spatial heterogeneity of the growth-climate relationship.Lower clay content and higher soil nutrient regimes can exacerbate the moisture-related susceptibility of tree growth.Our findings highlight that soil properties emerged as important modulating factors to predict the drought vulnerability of forests in addition to climatic variables.Considering the continued climate warmingdrying trend in the future,both pines will face a more severe growth decline and increase in drought vulnerability at drier sites with lower clayed soil or higher nutrient regimes.
文摘Let(X,T)be a linear dynamical system,where X is a Banach space and T:X→X is a bounded linear operator.This paper obtains that(X,T)is sensitive(Li-Yorke sensitive,mean sensitive,syndetically mean sensitive,respectively)if and only if(X,T)is Banach mean sensitive(Banach mean Li-Yorke sensitive,thickly multi-mean sensitive,thickly syndetically mean sensitive,respectively).Several examples are provided to distinguish between different notions of mean sensitivity,syndetic mean sensitivi`ty and mean Li-Yorke sensitivity.
基金supported by the National Natural Science Foundation of China (Nos.52274048 and 52374017)Beijing Natural Science Foundation (No.3222037)the CNPC 14th five-year perspective fundamental research project (No.2021DJ2104)。
文摘The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages.
文摘The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12104190,12104189,and 12204312)the Natural Science Foundation of Jiangsu Province (Grant No.BK20210874)+2 种基金the Jiangsu Provincial Key Research and Development Program (Grant No.BE2022143)the Jiangxi Provincial Natural Science Foundation (Grant Nos.20224BAB211014 and 20232BAB201042)the General Project of Natural Science Research in Colleges and Universities of Jiangsu Province (Grant No.20KJB140008)。
文摘We focus on the Mach–Zehnder interferometer(MZI) with the input of a coherent beam and one of the bright entangled twin beams with an external power reference beam employed for measurement. The results show that the phase sensitivity can reach sub-Heisenberg limit and approach quantum Cramer–Rao bound by changing the squeezing parameters and the photon number of the coherent beam, under the phase-matching condition. The absence of the external power reference beam will degrade the performance of the phase sensitivity. Meanwhile, this scheme shows good robustness against the losses of the photon detectors. We present a detailed discussion about the phase sensitivities when the inputs are two coherent beams, or a coherent beam plus a single-mode squeezed vacuum beam based on the MZI. This scenario can be applied in the field of phase precision measurements and other optical sensors.
基金supported by National Natural Science Foundation of China(No.62101601)the Fundamental Research Funds for the Central Universities under Grant 2020JBM017Joint Key Project of National Natural Science Foundation of China(No.U22B2004)。
文摘Circuit sensitivity of sensors or tags without battery is one practical constraint for ambient backscatter communication systems.This letter considers using beamforming to reduce the sensitivity constraint and evaluates the corresponding performance in terms of the tag activation distance and the system capacity.Specifically,we derive the activation probabilities of the tag in the case of single-antenna and multi-antenna transmitters.Besides,we obtain the capacity expressions for the ambient backscatter communication system with beamforming and illustrate the power allocation that maximizes the system capacity when the tag is activated.Finally,simulation results are provided to corroborate our proposed studies.
基金supported by 111 Project (No.D21025)Open Fund Project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Nos.PLN2021-01,PLN2021-02,PLN2021-03)+2 种基金High-end Foreign Expert Introduction Program (No.G2021036005L)National Key Research and Development Program (No.2021YFC2800903)National Natural Science Foundation of China (No.U20B6005-05)。
文摘During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.
基金funded in part by the National Natural Science Foundation of China,grant number 51574257in part by the National Key Research and Development Program of China,grant number 2015CB250904。
文摘Research on reservoir rock stress sensitivity has traditionally focused on unary granular structures,neglecting the binary nature of real reservoirs,especially tight reservoirs.Understanding the stresssensitive behavior and mathematical characterization of binary granular media remains a challenging task.In this study,we conducted online-NMR experiments to investigate the permeability and porosity evolution as well as stress-sensitive control mechanisms in tight sandy conglomerate samples.The results revealed stress sensitivity coefficients between 0.042 and 0.098 and permeability damage rates ranging from 65.6%to 90.9%,with an average pore compression coefficient of 0.0168—0.0208 MPa 1.Pore-scale compression occurred in three stages:filling,compression,and compaction,with matrix pores playing a dominant role in pore compression.The stress sensitivity of binary granular media was found to be influenced by the support structure and particle properties.High stress sensitivity was associated with small fine particle size,high fines content,high uniformity coefficient of particle size,high plastic deformation,and low Young's modulus.Matrix-supported samples exhibited a high irreversible permeability damage rate(average=74.2%)and stress sensitivity coefficients(average=0.089),with pore spaces more slit-like.In contrast,grain-supported samples showed low stress sensitivity coefficients(average=0.021)at high stress stages.Based on the experiments,we developed a mathematical model for stress sensitivity in binary granular media,considering binary granular properties and nested interactions using Hertz contact deformation and Poiseuille theory.By describing the change in activity content of fines under stress,we characterized the non-stationary state of compressive deformation in the binary granular structure and classified the reservoir into three categories.The model was applied for production prediction using actual data from the Mahu reservoir in China,showing that the energy retention rates of support-dominated,fill-dominated,and matrix-controlled reservoirs should be higher than 70.1%,88%,and 90.2%,respectively.
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.
基金This work was supported financially by the National Natural Science Foundation of China(No.12375176).
文摘The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce considerable uncertainty.Therefore,in recent years,the field of severe accidents has shifted its focus toward applying uncertainty analysis methods to quantify uncertainty in safety assessment programs,known as“best estimate plus uncertainty(BEPU).”This approach aids in enhancing our comprehension of these programs and their further development and improvement.This study concentrates on a third-generation pressurized water reactor equipped with advanced active and passive mitigation strategies.Through an Integrated Severe Accident Analysis Program(ISAA),numerical modeling and uncertainty analysis were conducted on severe accidents resulting from large break loss of coolant accidents.Seventeen uncertainty parameters of the ISAA program were meticulously screened.Using Wilks'formula,the developed uncertainty program code,SAUP,was employed to carry out Latin hypercube sampling,while ISAA was employed to execute batch calculations.Statistical analysis was then conducted on two figures of merit,namely hydrogen generation and the release of fission products within the pressure vessel.Uncertainty calculations revealed that hydrogen production and the fraction of fission product released exhibited a normal distribution,ranging from 182.784 to 330.664 kg and from 15.6 to 84.3%,respectively.The ratio of hydrogen production to reactor thermal power fell within the range of 0.0578–0.105.A sensitivity analysis was performed for uncertain input parameters,revealing significant correlations between the failure temperature of the cladding oxide layer,maximum melt flow rate,size of the particulate debris,and porosity of the debris with both hydrogen generation and the release of fission products.
文摘In the field of rail transit,the UK Department of Transport stated that it will realize a comprehensive transformation of UK railways by 2050,abandoning traditional diesel trains and upgrading them to new environmentally friendly trains.The current mainstream upgrade methods are electrification and hydrogen fuel cells.Comprehensive upgrades are costly,and choosing the optimal upgrade method for trams and mainline railways is critical.Without a sensitivity analysis,it is difficult for us to determine the influence relationship between each parameter and cost,resulting in a waste of cost when choosing a line reconstruction method.In addition,by analyzing the sensitivity of different parameters to the cost,the primary optimization direction can be determined to reduce the cost.Global higher-order sensitivity analysis enables quantification of parameter interactions,showing non-additive effects between parameters.This paper selects the main parameters that affect the retrofit cost and analyzes the retrofit cost of the two upgrade methods in the case of trams and mainline railways through local and global sensitivity analysis methods.The results of the analysis show that,given the current UK rail system,it is more economical to choose electric trams and hydrogen mainline trains.For trams,the speed at which the train travels has the greatest impact on the final cost.Through the sensitivity analysis,this paper provides an effective data reference for the current railway upgrading and reconstruction plan and provides a theoretical basis for the next step of train parameter optimization.
文摘KeLa-2 gas reservoir is the largest uncompartimentalized gas field so far discovered in China, with a reserve of hundreds of billions of cubic meters of dry gas. It has such features as extremely long interval (550m), high pressure (74.5MPa) and pressure coefficient (2.022). Gas reservoirs with a pressure coefficient of over 2.0 are not commonly found. The abnormal high-pressure reservoirs are quite different in characteristic and performance during the process of depletion exploitation. Therefore, it is necessary to know the property of pressure sensitivity for this abnormal high-pressure reservoir. The aim of this paper is to test the reservoir pressure sensitivity and to analyze its effect on the deliverability of gas. Through some experiments, the permeability change with the confining pressure of rock samples from KeLa-2 abnormal high-pressure gas reservoir is measured. A power function is used to match the measured data, and to derive an empirical equation to describe the change of permeability through the change of the reservoir pressure or effective overburden pressure. Considering the permeability change during the development of reservoirs, a conventional deliverability equation is modified, and the deliverability curve for KeLa-2 gas reservoir is predicted. The research indicates that the extent of the pressure sensitivity of rock samples from KeLa-2 is higher than that from the Daqing oilfield. KeLa-2 reservoir rock has the feature of an undercompaction state. The pressure sensitivity of a reservoir may decrease the well deliverability. It is concluded that for KeLa-2 reservoir the predicted absolute open flow (AOF), when the pressure sensitivity is taken into account, is approximately 70% of the AOF when permeability is constant and does not change with pressure.
文摘For complicated geometries, it is ineflicient to integrate over the entire domain. A new approach for optimization is presented here, based on sensitivity analysis of local do- main and deformation of full domain. Accurate results of design sensitivity analysis are ob- tained with this approach in shape optimization. This method is shown to be efficient when used in optimization programs and results in less distortion of the mesh.
文摘For a detector in a capacitanee fuze working in an electrostatic field, the bomblength (effective length of the conductor part) is an important factor affecting the sensitivityof detection. For the two different kinds of detecting circuit models in general use (the frequency-sensitive and the amplitude-coupling ), mechanism of the effect of bomblength on the sensitvity of detection is analyzed. Through the analysis a conclusion in fullagreement with experimental results has been drawn, that is. the longer the bomb length,the higher the sensitivity, on the condition that the sizes and the sites of the detecting electrodes and bomb diameter remain unchanged.
文摘Intercultural Communication Competence (ICC), as one of the research fields of intercultural communication, has been given much importance from scholars all around the world. Intercultural sensitivity is one of the three dimensions in Dr Chen's ICC model. This research investigates the reliability and validity of Chen and Starosta's Intercultural Sensitivity Scale (ISS) (2000) against Chinese cultural background by using Chinese university students majoring in English as respondents.
文摘Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the measurement. In this paper, experiments on the Kaiser effect in limestones were performed, and it was found that the limestones had good ability to retain a memory of their recent stress history and high time-sensitivity. The longer the experiment was delayed from the extraction of the stone, the larger the Felicity ratio was. As the Felicity ratio approached l, significant Kaiser effect was observed. In-situ stress should be determined by the limestone measurements when the delay time was 40-120 days. Finally, the in-situ stress in a limestone formation could be successfully measured in practice.
基金supported by the National Nature Science Foundation of China(Nos.11402238,11502243 and 11502245)
文摘Interaction of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)/ammonium perchlorate(AP) and its effect on mechanical sensitivity may result in some restrictions for the application of AP/HMX system in high energetic weapon system. In this work, impact sensitivity test is used to study the effects of wax coating of HMX, AP and aluminum(Al) powder on sensitivity properties of HMX/AP/Al mixtures.Thermogravimetry-differential scanning calorimetry(TG-DSC) analysis has been developed to investigate the mechanism of interaction between HMX and AP during the course of thermal decomposition of HMX/AP/AI mixtures. The results show that severe interaction effect exists between AP and HMX, which causes the impact sensitivity(H_(50)) to become smaller. The impact energy(E_(50)) of mixture can be improved under the circumstances of effective separating HMX from AP by surface coating with Wax. AP may firstly engender low-temperature decomposition under the circumstance of external heat or mechanical impact, which causes the exothermic peak of HMX forward shift about 28 C. The gaseous product releasing from thermal decomposition of HMX accelerates further decomposition of AP. For HMX/AP composite system, the interactive catalysis effect between AP and HMX can be eliminated mostly by adding a great deal of Al powder(i.e. above 30%).
文摘Fast neutron radiography(FNR) is an effective non-destructive testing technique.Due to the scattering effect and low detection efficiency,the detection limit of FNR under certain conditions cannot be determined.In order to obtain the minimum detectable thickness by FNR,we studied the contrast sensitivity of FNR lead samples,both theoretically and experimentally.We then clarified the relationship between pixel value and irradiation time,and sample materials and thickness.Our experiment,using a4-cm-thick lead sample,verified our theoretical expression of FNR contrast sensitivity.