为应对大规模多输入多输出(Multiple⁃input multiple⁃output,MIMO)系统中信道状态信息(Channel state information,CSI)反馈开销的日益增长,基于深度学习的CSI反馈网络(如Transformer网络)受到了广泛的关注,是一种非常有应用前景的智能...为应对大规模多输入多输出(Multiple⁃input multiple⁃output,MIMO)系统中信道状态信息(Channel state information,CSI)反馈开销的日益增长,基于深度学习的CSI反馈网络(如Transformer网络)受到了广泛的关注,是一种非常有应用前景的智能传输技术。为此,本文提出了一种基于数据聚类的CSI反馈Transformer网络的简化方法,采用基于聚类的近似矩阵乘法(Approximate matrix multiplication,AMM)技术,以降低反馈过程中Transformer网络的计算复杂度。本文主要对Transformer网络的全连接层计算(等效为矩阵乘法),应用乘积量化(Product quantization,PQ)和MADDNESS等简化方法,分析了它们对计算复杂度和系统性能的影响,并针对神经网络数据的特点进行了算法优化。仿真结果表明,在适当的参数调整下,基于MADDNESS方法的CSI反馈网络性能接近精确矩阵乘法方法,同时可大幅降低计算复杂度。展开更多
在设备到设备通信的车联网场景(Vehicle to Everything-Device to Device,V2X-D2D)下,信道的快速时变会导致基站(Base Station,BS)端通常无法获取完美信道状态信息(Channel State Information,CSI).为解决现有频谱分配方案不适用于V2X-...在设备到设备通信的车联网场景(Vehicle to Everything-Device to Device,V2X-D2D)下,信道的快速时变会导致基站(Base Station,BS)端通常无法获取完美信道状态信息(Channel State Information,CSI).为解决现有频谱分配方案不适用于V2X-D2D场景的问题,考虑车对车(Vehicle-to-Vehicle,V2V)链路可靠性、最大发射功率、频谱复用的约束,建立V2X的场景模型与通信模型.明确了在满足V2V链路可靠性的前提下,最大化车与基础设施(Vehicle to Infrastructure,V2I)链路的遍历容量的优化目标;在考虑信道快速时变影响的情况下,推导V2V链路的中断概率、V2I链路遍历容量的闭式表达式;针对一对一模式和一对多模式下的频谱分配问题,分别提出基于改进匈牙利算法的快速频谱分配方案和基于图着色-偏好列表的频谱分配方案.仿真结果表明:与现有算法相比,基于改进匈牙利算法的快速频谱分配方案接入率更高、复杂度更低,基于图着色-偏好列表的频谱分配方案也具有接入率、频谱利用率高的优势.展开更多
信道状态信息(Channel State Information,CSI)反馈是大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统的一个关键问题。大规模MIMO系统中基站天线数量巨大,CSI反馈出现了反馈开销大、反馈精度低等问题。为了降低反馈开销...信道状态信息(Channel State Information,CSI)反馈是大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统的一个关键问题。大规模MIMO系统中基站天线数量巨大,CSI反馈出现了反馈开销大、反馈精度低等问题。为了降低反馈开销,提高反馈精度,采用深度学习方法,提出了一种基于特征融合的CSI反馈网络(Feature Fusion Net,FFNet)。利用基于注意力机制的特征融合在编码器中融合不同尺度的CSI特征,并在解码器中使用多通道多分辨率卷积网络以及通道重排,从而高精度地重建压缩后的CSI。仿真结果表明,与几种经典的深度学习CSI反馈方法相比,在室内和室外信道条件下,均具有更高的反馈精度。展开更多
This paper considers an intelligent reflecting surface(IRS)-assisted multiple-input multiple-output(MIMO)system.To maximize the average achievable rate(AAR)under outdated channel state information(CSI),we propose a tw...This paper considers an intelligent reflecting surface(IRS)-assisted multiple-input multiple-output(MIMO)system.To maximize the average achievable rate(AAR)under outdated channel state information(CSI),we propose a twin-timescale passive beamforming(PBF)and power allocation protocol which can reduce the IRS configuration and training overhead.Specifi-cally,the short-timescale power allocation is designed with the outdated precoder and fixed PBF.A new particle swarm opti-mization(PSO)-based long-timescale PBF optimization is pro-posed,where mini-batch channel samples are utilized to update the fitness function.Finally,simulation results demonstrate the effectiveness of the proposed method.展开更多
随着人们对人数统计需求的不断增长,基于信道状态信息(channel state information,CSI)的人流量监测技术因其易于部署、保护隐私和适用性强等优势而备受关注.然而,在现有的人流量监测工作中,人数识别的准确率容易受到人群密集程度的影响...随着人们对人数统计需求的不断增长,基于信道状态信息(channel state information,CSI)的人流量监测技术因其易于部署、保护隐私和适用性强等优势而备受关注.然而,在现有的人流量监测工作中,人数识别的准确率容易受到人群密集程度的影响.为了保证监测精度,通常只能在人群稀疏的情况下进行监测,这导致了基于CSI的人流量监测技术缺乏实用性.为了解决这一问题,提出了一种能够识别连续性人流的监测方法.该方法首先利用解卷绕和线性相位校正算法,对原始数据进行相位补偿并消除随机相位偏移;然后通过标准差和方差提取连续性人流数据中的有效数据包;最后将时域上的相位差信息作为特征信号输入到深度学习的CLDNN(convolutional,long short-term memory,deep neural network)中进行人数识别.经过实验测试,该方法在前后排行人距离不小于1 m的情况下,分别实现了室外96.7%和室内94.1%的准确率,优于现有的人流量监测方法.展开更多
该文针对闭环多用户MIMO-OFDM系统提出一种基于线性预测的低速率CSI(Channel State Information)反馈方法。根据相关带宽将OFDM子载波划分成多个子带,移动台对每个子带的CSI作线性预测,并对预测误差进行量化编码后反馈给基站;基站使用...该文针对闭环多用户MIMO-OFDM系统提出一种基于线性预测的低速率CSI(Channel State Information)反馈方法。根据相关带宽将OFDM子载波划分成多个子带,移动台对每个子带的CSI作线性预测,并对预测误差进行量化编码后反馈给基站;基站使用相同的线性预测滤波器将反馈来的预测误差恢复成CSI,然后在每个子带上通过迫零-波束赋形实现多用户空间复用。同时,该文还在采用注水定理分配发射功率的条件下,从理论上分析了下行链路信道容量。数值仿真结果显示,每个反馈数据的实部或虚部仅用1bit量化时,本方法仍能够以较高的精度恢复CSI。与目前3GPP LTE标准所采用的基于码书的反馈方案相比,该方法能够在反馈开销相同情况下,有效地抑制同信道干扰,大幅提高系统容量。展开更多
针对多输入多输出(multiple-input multiple-output,MIMO)雷达通信一体化(dual-function radarcommunication,DFRC)系统性能对信道状态信息(channel state information,CSI)精度敏感的问题,构建了非完美CSI条件下的模数混合波束形成设...针对多输入多输出(multiple-input multiple-output,MIMO)雷达通信一体化(dual-function radarcommunication,DFRC)系统性能对信道状态信息(channel state information,CSI)精度敏感的问题,构建了非完美CSI条件下的模数混合波束形成设计模型,提出了一种鲁棒的混合波束形成器优化方法。利用CSI误差的先验统计信息,在满足通信中断概率约束的同时最小化雷达方向图加权均方误差,以得到期望的发射数字和模拟波束形成矩阵。所提出的非凸优化问题首先利用坎泰利(Cantelli)不等式进行近似处理,再利用交替方向乘子法(alternating direction method of multipliers,ADMM)求解。仿真实验对比了多种算法之间的性能差异,验证了所提出的MIMO-DFRC混合波束形成设计方法具有高效性和鲁棒性。展开更多
文摘在设备到设备通信的车联网场景(Vehicle to Everything-Device to Device,V2X-D2D)下,信道的快速时变会导致基站(Base Station,BS)端通常无法获取完美信道状态信息(Channel State Information,CSI).为解决现有频谱分配方案不适用于V2X-D2D场景的问题,考虑车对车(Vehicle-to-Vehicle,V2V)链路可靠性、最大发射功率、频谱复用的约束,建立V2X的场景模型与通信模型.明确了在满足V2V链路可靠性的前提下,最大化车与基础设施(Vehicle to Infrastructure,V2I)链路的遍历容量的优化目标;在考虑信道快速时变影响的情况下,推导V2V链路的中断概率、V2I链路遍历容量的闭式表达式;针对一对一模式和一对多模式下的频谱分配问题,分别提出基于改进匈牙利算法的快速频谱分配方案和基于图着色-偏好列表的频谱分配方案.仿真结果表明:与现有算法相比,基于改进匈牙利算法的快速频谱分配方案接入率更高、复杂度更低,基于图着色-偏好列表的频谱分配方案也具有接入率、频谱利用率高的优势.
基金supported by the National Natural Science Foundation of China(62271068)the Beijing Natural Science Foundation(L222046).
文摘This paper considers an intelligent reflecting surface(IRS)-assisted multiple-input multiple-output(MIMO)system.To maximize the average achievable rate(AAR)under outdated channel state information(CSI),we propose a twin-timescale passive beamforming(PBF)and power allocation protocol which can reduce the IRS configuration and training overhead.Specifi-cally,the short-timescale power allocation is designed with the outdated precoder and fixed PBF.A new particle swarm opti-mization(PSO)-based long-timescale PBF optimization is pro-posed,where mini-batch channel samples are utilized to update the fitness function.Finally,simulation results demonstrate the effectiveness of the proposed method.
文摘该文针对闭环多用户MIMO-OFDM系统提出一种基于线性预测的低速率CSI(Channel State Information)反馈方法。根据相关带宽将OFDM子载波划分成多个子带,移动台对每个子带的CSI作线性预测,并对预测误差进行量化编码后反馈给基站;基站使用相同的线性预测滤波器将反馈来的预测误差恢复成CSI,然后在每个子带上通过迫零-波束赋形实现多用户空间复用。同时,该文还在采用注水定理分配发射功率的条件下,从理论上分析了下行链路信道容量。数值仿真结果显示,每个反馈数据的实部或虚部仅用1bit量化时,本方法仍能够以较高的精度恢复CSI。与目前3GPP LTE标准所采用的基于码书的反馈方案相比,该方法能够在反馈开销相同情况下,有效地抑制同信道干扰,大幅提高系统容量。
文摘针对多输入多输出(multiple-input multiple-output,MIMO)雷达通信一体化(dual-function radarcommunication,DFRC)系统性能对信道状态信息(channel state information,CSI)精度敏感的问题,构建了非完美CSI条件下的模数混合波束形成设计模型,提出了一种鲁棒的混合波束形成器优化方法。利用CSI误差的先验统计信息,在满足通信中断概率约束的同时最小化雷达方向图加权均方误差,以得到期望的发射数字和模拟波束形成矩阵。所提出的非凸优化问题首先利用坎泰利(Cantelli)不等式进行近似处理,再利用交替方向乘子法(alternating direction method of multipliers,ADMM)求解。仿真实验对比了多种算法之间的性能差异,验证了所提出的MIMO-DFRC混合波束形成设计方法具有高效性和鲁棒性。