对移动目标的高精度测距是室内定位的关键。室内环境中无线接入点(Access Point, AP)采集的移动目标设备的接收信号强度指示(Received Signal Strength Indication, RSSI)受阴影衰落波动严重。受到RSSI采集频率和目标机动能力的限制,AP...对移动目标的高精度测距是室内定位的关键。室内环境中无线接入点(Access Point, AP)采集的移动目标设备的接收信号强度指示(Received Signal Strength Indication, RSSI)受阴影衰落波动严重。受到RSSI采集频率和目标机动能力的限制,AP采集到的RSSI样本量少,导致基于RSSI测距精度差。为提高基于RSSI对移动目标测距的精度,本文提出了基于RSSI的AP簇测距(AP Cluster Ranging, APCR)方法。该方法通过对多个AP进行位置约束组成AP簇采集移动目标设备的RSSI,在相同采集频率下可获得更多的RSSI样本。利用RSSI波动特点,使用最大值选取和Dixon检验相结合的方式从AP簇采集的RSSI样本中筛选出高质量的RSSI样本,以提高对移动目标的测距精度。仿真和实验结果表明,与传统RSSI处理方法相比,本方法在室内环境简单或复杂时都具有更高的测距精度,在少量RSSI采集次数下同样能保持较高精度,更能满足对移动目标测距的需求。展开更多
室内定位技术在多领域有着重要的应用,而传统的无线局域网(Wireless Local Area Network,WLAN)指纹定位方法通常很少考虑WLAN接收信号强度(Received Signal Strength,RSS)特征的多样性以及来自不同接入点(Access Point,AP)的RSS特征位...室内定位技术在多领域有着重要的应用,而传统的无线局域网(Wireless Local Area Network,WLAN)指纹定位方法通常很少考虑WLAN接收信号强度(Received Signal Strength,RSS)特征的多样性以及来自不同接入点(Access Point,AP)的RSS特征位置分辨力的差异性问题,从而导致WLAN定位精度不高且定位效率较低.对此,本文提出一种基于多维模糊映射AP优化的WLAN室内定位方法.在离线阶段通过多次采集RSS数据提取多维RSS特征,计算AP信息增益比及相应的离线模糊隶属度,并利用模糊关系方程求解多维RSS特征模糊权重;而在在线阶段,则通过多维模糊映射构造模糊判定矩阵并计算AP在线模糊隶属度,同时结合K近邻(K-Nearest Neighbor,KNN)算法完成对目标的位置坐标计算.实验结果表明,相较于传统的AP优化定位方法,所提方法在线阶段的定位计算开销最高减少了4.12 s,定位误差4 m内的置信概率为91.91%.展开更多
在不均匀光照条件下,光伏阵列输出特性呈现多峰现象,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法容易陷入局部极值。为了提高复杂阴影下的跟踪速度和跟踪精度,结合改进粒子群算法(improved particle swarm optimizati...在不均匀光照条件下,光伏阵列输出特性呈现多峰现象,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法容易陷入局部极值。为了提高复杂阴影下的跟踪速度和跟踪精度,结合改进粒子群算法(improved particle swarm optimization,IPSO)和自适应步长扰动观察法(adaptive perturbation and observation,AP&O)各自的特点,提出了基于IPSO-AP&O算法的改进MPPT控制方法。其中,IPSO算法采用自适应惯性权重因子,在不同搜索阶段能够充分搜索目标函数,然后与AP&O算法结合实现最大功率的稳定输出。仿真结果表明,所提出的IPSO-AP&O算法减少了传统智能算法的迭代过程,能快速跟踪到全局最大功率点,相比其余几种算法而言,在光照强度突变时均具备快速精准的双重跟踪能力,在4种场景下跟踪效率分别为99.86%、99.91%、87.63%、99.79%,能够更好地减小光伏阵列外部条件变化导致的功率损耗,所提出的MPPT控制方法能够较好地适用于光储混合系统,具备工程实用价值。展开更多
文摘对移动目标的高精度测距是室内定位的关键。室内环境中无线接入点(Access Point, AP)采集的移动目标设备的接收信号强度指示(Received Signal Strength Indication, RSSI)受阴影衰落波动严重。受到RSSI采集频率和目标机动能力的限制,AP采集到的RSSI样本量少,导致基于RSSI测距精度差。为提高基于RSSI对移动目标测距的精度,本文提出了基于RSSI的AP簇测距(AP Cluster Ranging, APCR)方法。该方法通过对多个AP进行位置约束组成AP簇采集移动目标设备的RSSI,在相同采集频率下可获得更多的RSSI样本。利用RSSI波动特点,使用最大值选取和Dixon检验相结合的方式从AP簇采集的RSSI样本中筛选出高质量的RSSI样本,以提高对移动目标的测距精度。仿真和实验结果表明,与传统RSSI处理方法相比,本方法在室内环境简单或复杂时都具有更高的测距精度,在少量RSSI采集次数下同样能保持较高精度,更能满足对移动目标测距的需求。
文摘室内定位技术在多领域有着重要的应用,而传统的无线局域网(Wireless Local Area Network,WLAN)指纹定位方法通常很少考虑WLAN接收信号强度(Received Signal Strength,RSS)特征的多样性以及来自不同接入点(Access Point,AP)的RSS特征位置分辨力的差异性问题,从而导致WLAN定位精度不高且定位效率较低.对此,本文提出一种基于多维模糊映射AP优化的WLAN室内定位方法.在离线阶段通过多次采集RSS数据提取多维RSS特征,计算AP信息增益比及相应的离线模糊隶属度,并利用模糊关系方程求解多维RSS特征模糊权重;而在在线阶段,则通过多维模糊映射构造模糊判定矩阵并计算AP在线模糊隶属度,同时结合K近邻(K-Nearest Neighbor,KNN)算法完成对目标的位置坐标计算.实验结果表明,相较于传统的AP优化定位方法,所提方法在线阶段的定位计算开销最高减少了4.12 s,定位误差4 m内的置信概率为91.91%.
文摘在不均匀光照条件下,光伏阵列输出特性呈现多峰现象,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法容易陷入局部极值。为了提高复杂阴影下的跟踪速度和跟踪精度,结合改进粒子群算法(improved particle swarm optimization,IPSO)和自适应步长扰动观察法(adaptive perturbation and observation,AP&O)各自的特点,提出了基于IPSO-AP&O算法的改进MPPT控制方法。其中,IPSO算法采用自适应惯性权重因子,在不同搜索阶段能够充分搜索目标函数,然后与AP&O算法结合实现最大功率的稳定输出。仿真结果表明,所提出的IPSO-AP&O算法减少了传统智能算法的迭代过程,能快速跟踪到全局最大功率点,相比其余几种算法而言,在光照强度突变时均具备快速精准的双重跟踪能力,在4种场景下跟踪效率分别为99.86%、99.91%、87.63%、99.79%,能够更好地减小光伏阵列外部条件变化导致的功率损耗,所提出的MPPT控制方法能够较好地适用于光储混合系统,具备工程实用价值。