For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode contr...For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.展开更多
In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates...In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorize...A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. Each MSB function has its own required belt tension which is determined by the function's purpose. To realize the MSB functions, state information, such as seat belt winding velocity and seat belt tension are required. Using a linear state observer, the state information for MSB operations can be estimated without sensors. To design the linear state observer, the motorized seat belt system is analyzed and represented as a state space model which contains load torque as an augmented state. Based on the state space model, a linear state observer was designed and verified by experiments. Also, the retraction control of the MSB algorithm using linear state observer was designed and verified on the test bench. With the designed retraction control algorithm using the linear state observer, it is possible to realize various types of MSB functions.展开更多
For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to ...For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.展开更多
The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS...The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS with short time-delay. Based on the designed states observer, a robust fault detection approach is proposed for NCS. In addition, an optimization method for the selection of the detection threshold is introduced for better tradeoff between the robustness and the sensitivity. Finally, some simulation results demonstrate that the presented states observer is robust and the fault detection for NCS is effective.展开更多
A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-w...A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.展开更多
A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight...A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight(LOS) rate. For the sake of theoretical derivation, an IGC model in the pitch plane is established. The high-order finite-time state observer(FTSO), with the LOS angle as the single input, is employed to reconstruct the states of the system online. Besides, a composited IGC algorithm is presented via the fusion of back-stepping and dynamic inverse. Compared with the traditional IGC algorithm, the proposed composited IGC method can attenuate effectively the design conservation of the flight control system, while the LOS rate is mixed with noise. Extensive experiments have been performed to demonstrate that the proposed approach is globally finite-time stable and strongly robust against parameter uncertainty.展开更多
A novel non-contact spacecraft architecture with the extended stochastic state observer for disturbance rejection control of the gravity satellite is proposed.First,the precise linear driving non-contact voice-coil ac...A novel non-contact spacecraft architecture with the extended stochastic state observer for disturbance rejection control of the gravity satellite is proposed.First,the precise linear driving non-contact voice-coil actuators are used to separate the whole spacecraft into the non-contact payload module and the service module,and to build an ideal loop with precise dynamics for disturbance rejection control of the payload module.Second,an extended stochastic state observer is enveloped to construct the overall nonlinear external terms and the internal coupled terms of the payload module,enabling the controller design of the payload module turned into the linear form with simple bandwidth-parameterization tuning in the frequency domain.As a result,the disturbance rejection control of the payload module can be explicitly achieved in a timely manner without complicated tuning in actual implementation.Finally,an extensive numerical simulation is conducted to validate the feasibility and effectiveness of the proposed approach.展开更多
This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay ...This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.展开更多
For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First...For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First,two ESOs are designed to estimate sensor faults and actuator faults respectively.Second,the angular rate signal is reconstructed according to the estimation of sensor faults.Third,in angular rate loop,NDI is designed based on reconstruction of angular rate signals and estimation of actuator faults.The FTC scheme proposed in this paper is testified through numerical simulations.The results show that it is feasible and has good fault tolerant ability.展开更多
For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The...For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The second step obtains the real-time control action by solving algebraic equation and desaturation. The case of immeasurable state is considered where the observer gain matrix is solved by Sylvester equation. The sufficient closed-loop stability condition is given and the designing and tuning algorithm for the domain of attraction is proposed. The theoretical results are validated by an example.展开更多
Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont...Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.展开更多
The problem of observer-based robust predictive control is studied for the singular systems with norm-bounded uncertainties and time-delay, and the design method of robust predictive observer-based controller is propo...The problem of observer-based robust predictive control is studied for the singular systems with norm-bounded uncertainties and time-delay, and the design method of robust predictive observer-based controller is proposed. By constructing the Lyapunov function with the error terms, the infinite time domain "min-max" optimization problems are converted into convex optimization problems solving by the linear matrix inequality (LMI), and the sufficient conditions for the existence of this control are derived. It is proved that the robust stability of the closed-loop singular systems can be guaranteed by the initial feasible solutions of the optimization problems, and the regular and the impulse-free of the singular systems are also guaranteed. A simulation example illustrates the efficiency of this method.展开更多
Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research...Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research has studied this problem.This paper analyzes the observability and estimability for passive radar systems with unknown IO states under three typical scenarios.Besides,the directions of high and low estimability with respect to various states are given.Moreover,two types of observations are taken into account.The effects of different observations on both observability and estimability are well analyzed.For the observability test,linear and nonlinear methods are considered,which proves that both tests are applicable to the system.Numerical simulations confirm the correctness of the theoretical analysis.展开更多
This paper designs a joint controller/observer framework using a state dependent Riccati equation(SDRE)approach for an active transfemoral prosthesis system.An integral state control technique is utilized to design a ...This paper designs a joint controller/observer framework using a state dependent Riccati equation(SDRE)approach for an active transfemoral prosthesis system.An integral state control technique is utilized to design a tracking controller for a robot/prosthesis system.This framework promises a systematic flexible design using which multiple design specifications such as robustness,state estimation,and control optimality are achieved without the need for model linearization.Performance of the proposed approach is demonstrated through simulation studies,which show improvements versus a robust adaptive impedance controller and an extended Kalman filter-based state estimation method.Numerical results confirm the benefits of our method over the above-mentioned approaches with regard to control optimality and state estimation.展开更多
A discrete observer-based repetitive control(RC) design method for a linear system with uncertainties was presented based on two-dimensional(2D) system theory. Firstly, a 2D discrete model was established to describe ...A discrete observer-based repetitive control(RC) design method for a linear system with uncertainties was presented based on two-dimensional(2D) system theory. Firstly, a 2D discrete model was established to describe both the control behavior within a repetition period and the learning process taking place between periods. Next, by converting the designing problem of repetitive controller into one of the feedback gains of reconstructed variables, the stable condition was obtained through linear matrix inequality(LMI) and also the gain coefficient of repetitive system. Numerical simulation shows an exceptional feasibility of this proposal with remarkable robustness and tracking speed.展开更多
文摘For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.
基金supported by the National Natural Science Foundation of China(61873126)。
文摘In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
基金Project supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2011-2012
文摘A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. Each MSB function has its own required belt tension which is determined by the function's purpose. To realize the MSB functions, state information, such as seat belt winding velocity and seat belt tension are required. Using a linear state observer, the state information for MSB operations can be estimated without sensors. To design the linear state observer, the motorized seat belt system is analyzed and represented as a state space model which contains load torque as an augmented state. Based on the state space model, a linear state observer was designed and verified by experiments. Also, the retraction control of the MSB algorithm using linear state observer was designed and verified on the test bench. With the designed retraction control algorithm using the linear state observer, it is possible to realize various types of MSB functions.
文摘For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.
基金supported partly by the Natural Science Foundation China (70571032).
文摘The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS with short time-delay. Based on the designed states observer, a robust fault detection approach is proposed for NCS. In addition, an optimization method for the selection of the detection threshold is introduced for better tradeoff between the robustness and the sensitivity. Finally, some simulation results demonstrate that the presented states observer is robust and the fault detection for NCS is effective.
基金supported by the Aeronautical Science Foundation of China(20175752045)。
文摘A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.
基金supported by the National Natural Science Foundation of China(61627810 61790562 61403096)
文摘A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight(LOS) rate. For the sake of theoretical derivation, an IGC model in the pitch plane is established. The high-order finite-time state observer(FTSO), with the LOS angle as the single input, is employed to reconstruct the states of the system online. Besides, a composited IGC algorithm is presented via the fusion of back-stepping and dynamic inverse. Compared with the traditional IGC algorithm, the proposed composited IGC method can attenuate effectively the design conservation of the flight control system, while the LOS rate is mixed with noise. Extensive experiments have been performed to demonstrate that the proposed approach is globally finite-time stable and strongly robust against parameter uncertainty.
基金supported by the National Natural Science Foundation of China(5170532751805329)+1 种基金Fundamental Research Funds for the Central Universities of China(NS2020065)the Natural Science Foundation of Shanghai(19ZR1453300).
文摘A novel non-contact spacecraft architecture with the extended stochastic state observer for disturbance rejection control of the gravity satellite is proposed.First,the precise linear driving non-contact voice-coil actuators are used to separate the whole spacecraft into the non-contact payload module and the service module,and to build an ideal loop with precise dynamics for disturbance rejection control of the payload module.Second,an extended stochastic state observer is enveloped to construct the overall nonlinear external terms and the internal coupled terms of the payload module,enabling the controller design of the payload module turned into the linear form with simple bandwidth-parameterization tuning in the frequency domain.As a result,the disturbance rejection control of the payload module can be explicitly achieved in a timely manner without complicated tuning in actual implementation.Finally,an extensive numerical simulation is conducted to validate the feasibility and effectiveness of the proposed approach.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20201159).
文摘This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.
基金supported by the Chinese Aviation Science Fund(20160757001)the National Natural Science Foundation of China(10577012)。
文摘For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First,two ESOs are designed to estimate sensor faults and actuator faults respectively.Second,the angular rate signal is reconstructed according to the estimation of sensor faults.Third,in angular rate loop,NDI is designed based on reconstruction of angular rate signals and estimation of actuator faults.The FTC scheme proposed in this paper is testified through numerical simulations.The results show that it is feasible and has good fault tolerant ability.
文摘For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The second step obtains the real-time control action by solving algebraic equation and desaturation. The case of immeasurable state is considered where the observer gain matrix is solved by Sylvester equation. The sufficient closed-loop stability condition is given and the designing and tuning algorithm for the domain of attraction is proposed. The theoretical results are validated by an example.
文摘Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.
基金supported by the National Natural Science Foundation of China(60774016).
文摘The problem of observer-based robust predictive control is studied for the singular systems with norm-bounded uncertainties and time-delay, and the design method of robust predictive observer-based controller is proposed. By constructing the Lyapunov function with the error terms, the infinite time domain "min-max" optimization problems are converted into convex optimization problems solving by the linear matrix inequality (LMI), and the sufficient conditions for the existence of this control are derived. It is proved that the robust stability of the closed-loop singular systems can be guaranteed by the initial feasible solutions of the optimization problems, and the regular and the impulse-free of the singular systems are also guaranteed. A simulation example illustrates the efficiency of this method.
基金This work was supported by the National Natural Science Foundation of China(61803379)the China Postdoctoral Science Foundation(2017M613370,2018T111129).
文摘Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research has studied this problem.This paper analyzes the observability and estimability for passive radar systems with unknown IO states under three typical scenarios.Besides,the directions of high and low estimability with respect to various states are given.Moreover,two types of observations are taken into account.The effects of different observations on both observability and estimability are well analyzed.For the observability test,linear and nonlinear methods are considered,which proves that both tests are applicable to the system.Numerical simulations confirm the correctness of the theoretical analysis.
文摘This paper designs a joint controller/observer framework using a state dependent Riccati equation(SDRE)approach for an active transfemoral prosthesis system.An integral state control technique is utilized to design a tracking controller for a robot/prosthesis system.This framework promises a systematic flexible design using which multiple design specifications such as robustness,state estimation,and control optimality are achieved without the need for model linearization.Performance of the proposed approach is demonstrated through simulation studies,which show improvements versus a robust adaptive impedance controller and an extended Kalman filter-based state estimation method.Numerical results confirm the benefits of our method over the above-mentioned approaches with regard to control optimality and state estimation.
基金Supported by National Natural Science Foundation of China (50525721, 50595411), and Science and Technology Progress Foundation for Colleges and Universities of Tianjin (20051527)
基金Project(61104072) supported by the National Natural Science Foundation of China
文摘A discrete observer-based repetitive control(RC) design method for a linear system with uncertainties was presented based on two-dimensional(2D) system theory. Firstly, a 2D discrete model was established to describe both the control behavior within a repetition period and the learning process taking place between periods. Next, by converting the designing problem of repetitive controller into one of the feedback gains of reconstructed variables, the stable condition was obtained through linear matrix inequality(LMI) and also the gain coefficient of repetitive system. Numerical simulation shows an exceptional feasibility of this proposal with remarkable robustness and tracking speed.