Adsorption by solid amine adsorbent is a promising technology for decarbonization of flue gas.However,adsorption properties of many solid amine adsorbents need to be enhanced,and it is necessary to further study the C...Adsorption by solid amine adsorbent is a promising technology for decarbonization of flue gas.However,adsorption properties of many solid amine adsorbents need to be enhanced,and it is necessary to further study the CO_(2)adsorption mechanism.A novel CO_(2)adsorbent with high capacity was obtained by grafting 3-aminopropyltriethoxysilane(APTES)on a micro-mesoporous composite molecular sieve ZSM-5/MCM-48 as the support,and then impregnated with tetraethylenepentamine(TEPA)or polyethyleneimine(PEI).The maximum adsorption capacity of APTES-ZSM-5/MCM-48-TEPA-60(A-ZM-T60),loaded with 60%(in mass)TEPA,for CO_(2)reaches 5.82 mmol·g^(-1) at 60℃in 15%(in volume)CO_(2).Carbamate,alkyl ammonium carbamate and carbonate are generated during the chemical adsorption,which is dominant for CO_(2)adsorption because of the reaction between CO_(2)and amino groups on the adsorbent,simultaneously accompanied by weak physical adsorption.All above data confirm that these composites display an outstanding adsorption performance with a bright future for CO_(2)capture from flue gas after desulfurization.展开更多
A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorptio...A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorption capacity of the adsorbent was further enhanced by taking advantage of the nitrogenous bases contained in the BA.In the hydrothermal process,the addition of BA significantly increased the content of pyrrole nitrogen in the adsorbent.In the activation process,pyrrole nitrogen gradually changed into pyridine nitrogen and graphite nitrogen.Increased BA addition result in a higher specific surface area and microporosity of the adsorbent.The CO_(2)adsorption performance test proved that the CGFS-50%-CA sample has the strongest CO_(2)adsorption capacity at low temperature,up to 15.59 cm^(3)/g,which is mainly through physical adsorption,and the CGFS-10%-CA sample has the strongest CO_(2)adsorption capacity at high temperature,up to 7.31 cm^(3)/g,which is mainly through chemical adsorption.CO_(2)uptake of the CGFS-10%-CA sample was well maintained after 10 cycles,with regeneration efficiencies above 99%.The results indicate that the novel adsorbents with coexistence of physical and chemical adsorption have great potential for CO_(2)adsorption applications.展开更多
In order to greatly improve adsorption capacity, the diatomite was pillared by polyhydroxyl-aluminum.A series of adsorption tests were conducted to obtain the optimum condition for pillared diatomite synthesis. The sc...In order to greatly improve adsorption capacity, the diatomite was pillared by polyhydroxyl-aluminum.A series of adsorption tests were conducted to obtain the optimum condition for pillared diatomite synthesis. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), surface area and porosity analyzer and micro-electrophoresis were used to determine pore structure and surface property.The pillared diatomite attaining the optimal adsorption densities (qe) of Pb^2+ and Cd^2+ was synthesized with the following conditions: Addition of pillaring solution containing Al3+-oligomers with a concentration range of 0.1-0.2 mol/L to a suspension containing Na+-diatomite to obtain the required Al/diatomite ratio of 10 mmol/g; synthesis temperature of 80 ℃ for 120 min; aging at a temperature of 105 ℃ for 16 h. The adsorption capacities of Pb^2+ and Cd^2+ on pillared diatomite increase by 23.79% and 27.36% compared with natural diatomite, respectively. The surface property of pillared diatomite is more favorable for ion adsorption than natural diatomite. The result suggests that diatomite can be modified by pillaring with polyhydroxyl-aluminum to improve its adsorption properties greatly.展开更多
Pb2+ and Cd2+ in leachate were adsorbed on clay-solidified grouting curtain for waste landfills with equilibrium experiment. The cation exchange capacity was determined with ammonium acetate. And the concentration of ...Pb2+ and Cd2+ in leachate were adsorbed on clay-solidified grouting curtain for waste landfills with equilibrium experiment. The cation exchange capacity was determined with ammonium acetate. And the concentration of heavy metal cations in leachate was determined with atomic absorption spectrophotometer. Their equilibrium isotherms were measured, and the experimental isotherm data were analyzed by using Freundlich and Langmuir models. The results show that the adsorption capacities of the heavy metal cations are closely related to the compositions of clay-solidified grouting curtain, and the maximum adsorption appears at the ratio of cement to clay of 2∶4 in the experimental conditions. At their maximum adsorption and pH 5.0, the adsorption capacities of Pb 2+ and Cd 2+ are 16.19mg/g and 1.21mg/g. The competitive adsorption coefficients indicate that the adsorption of clay-solidified grouting curtain for Pb2+ is stronger than that for Cd 2+ . The adsorption process conforms to Freundlich’s model with related coefficient higher than 0.996.展开更多
To improve the adsorption performance and simplify uranium separation from aqueous media in post-treatment processes,a magnetic CoFe_(2)O_(4)@rGO composite was synthesized by microwave-hydrothermal method.The results ...To improve the adsorption performance and simplify uranium separation from aqueous media in post-treatment processes,a magnetic CoFe_(2)O_(4)@rGO composite was synthesized by microwave-hydrothermal method.The results of XRD,Raman,TEM/HRTEM,FTIR,BET and VSM characterization show that spinel-type cobalt ferrite CoFe_(2)O_(4) nanoparticles ca.13.4 nm in size are dispersedly anchored on the graphene sheet,and the saturation magnetization of the nanocomposite is 46.7 mA/(m^(2)·g).The effects of different pH,initial concentration and other conditions on uranium adsorption capacity were investigated,and adsorption kinetics equations were fitted to determine the adsorption behaviour of uranium on CoFe_(2)O_(4)@rGO in simulated uranium-containing seawater.It was observed that the uranium adsorption capacity of CoFe_(2)O_(4)@rGO composite at pH=5 is 127.6 mg/g,which is 1.31 and 2.43 times that of rGO and pure CoFe_(2)O_(4).The adsorption process conforms to Langmuir and quasi-second-order kinetic model.The excellent adsorption performance of CoFe_(2)O_(4)@rGO makes it potentially useful in the treatment of uranium-polluted water.展开更多
Pb2+ adsorption onto a soil by irrigation of sewage in the Pearl River Delta of South China was examined as a function of the reaction time, solution pH, initial lead concentration, organic matter (humic acid) and ...Pb2+ adsorption onto a soil by irrigation of sewage in the Pearl River Delta of South China was examined as a function of the reaction time, solution pH, initial lead concentration, organic matter (humic acid) and competitive ions (Cu2+). The adsorption of Pb2+ onto the soil was investigated on batch equilibrium adsorption experiments. Results show that the Pb2+ adsorption on the soil is relatively rapid in the first 30 min and reaches equilibrium at 2 h, and the kinetics of the adsorption process on the soil is well characterized by the pseudo-second order reaction rate. Langmuir, Freundlich and Temkin isothermal models are fit for the adsorption of Pb2+ onto the soil, and the maximum amount of Pb2+ adsorption (Qm) is 7.47 mg/g. The amount of Pb2+ adsorption increases with increasing the pH at the range of 1.2-4.5 and reaches a plateau at the range of 4.5-12. The presence of humic acid in soil decreases the adsorption of Pb2+ onto the soil at solution pH of 8 since the negatively charged humic acid with Pb2+ is difficult to be adsorbed on the negatively charged soil surface. The adsorption of Pb2+ onto the soil also decreases in the presence of Cu2+ due to file competition adsorption between Pb2+ and Cu2+.展开更多
The adsorption properties of a novel macroporous weak acid resin (D152) for Pb^2+ were investigated with chemical methods. The optimal adsorption condition of D152 resin for Pb^2+ is at pH 6.00 in HAc-NaAc medium....The adsorption properties of a novel macroporous weak acid resin (D152) for Pb^2+ were investigated with chemical methods. The optimal adsorption condition of D152 resin for Pb^2+ is at pH 6.00 in HAc-NaAc medium. The statically saturated adsorption capacity is 527 mg/g at 298 K. Pb^2+ adsorbed on D152 resin can be eluted with 0.05 mol/L HCI quantitatively. The adsorption rate constants determined under various temperatures are k288 n=2.22×10-5 s^-1, k298 K=2.51 × 10^-5 s^-1, and k308 K= 2.95 × 10^-5 s^-1, respectively. The apparent activation energy, Ea is 10.5 kJ/mol, and the adsorption parameters of thermodynamics are ΔH^Θ=13.3 kJ/mol, ΔS^Θ=119 J/(mol·K), and ΔG^Θ298 K =-22.2 kJ/mol, respectively. The adsorption behavior of D152 resin for Pb^2+ follows Langmuir model.展开更多
The adsorption behavior of Pb2+ and Cd2+ ions on bauxite flotation tailings was investigated to demonstrate the adsorptivity of the bauxite flotation tailings.The adsorption percentage of Pb2+ and Cd2+ ions as a funct...The adsorption behavior of Pb2+ and Cd2+ ions on bauxite flotation tailings was investigated to demonstrate the adsorptivity of the bauxite flotation tailings.The adsorption percentage of Pb2+ and Cd2+ ions as a function of adsorbent dosage,solution pH value and shaking time were determined by batch experiments.The maximum adsorption percentage of 99.93% for Pb2+ ions and 99.75% for Cd2+ ions were obtained by using bauxite flotation tailings as adsorbent.The methods,such as zeta potentials,specific surface area measurements and the analysis of adsorption kinetics,were introduced to analyze the adsorption mechanisms of the Pb2+ ions on bauxite flotation tailings.The isoelectric point of bauxite flotation tailings shifts from 3.6 to 5.6 in the presence of Pb2+ ions.The specific surface area of bauxite flotation tailings changes from 12.57 to 20.63 m2/g after the adsorption of Pb2+ ions.These results indicate that a specific adsorption of the cation species happens on the surface of bauxite flotation tailings.Adsorption data of Pb2+ ions on the surface of bauxite flotation tailings can be well described by Langmuir model,and the pseudo-second-order kinetic model provides the best correlation for the adsorption data of Pb2+ and Cd2+ ions on bauxite flotation tailings.展开更多
A novel chelating resin with sulfonic group was synthesized by chemical modification of D401 resin with sulphonation reaction and characterized by FT-IR spectrometry. The adsorption properties of the novel chelating r...A novel chelating resin with sulfonic group was synthesized by chemical modification of D401 resin with sulphonation reaction and characterized by FT-IR spectrometry. The adsorption properties of the novel chelating resin for Pb2+ were studied by batch adsorption, and the adsorption process was analyzed from thermodynamics and kinetics aspects. The adsorption mechanism of Pb2+ on the modified D401 chelating resin was discussed by FT-IR spectrometry. Experimental results show that in the Pb2+ concentration range of 200-400 mg/L, the adsorption capacities of the modified D401 chelating resin for Pb2+ increase by 77%-129%, and Langmuir isothermal adsorption model is more suitable for the equilibrium adsorption data. Adsorption is an endothermic process that runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best pH value under adsorption condition is 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the adsorption capacity remains stable after five consecutive adsorption-desorption cycles. The maximal static saturated adsorption capacity of the resin is 206 mg/g at 333 K in the Pb2+ concentration range of 200-400 mg/L. The modified D401 chelating resin is an efficient adsorbent for the removal of Pb2+ from its single-metal ion solution.展开更多
Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent material...Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent materials were successfully synthesized by loading TEPA onto the pore MgO/ZrO_(2)carriers in the paper.The pore structure and surface characteristic of the samples were analyzed by using XRD,BET,FT-IR and SEM.The adsorbent materials exhibited microcrystalline state,and the crystallinity of all samples gradually decreased as the increase of TEPA content.The pore structure analysis indicated that the modification of MgO-ZrO_(2)adsorbents with TEPA led to the decrease of the specific surface areas,but the narrow micro-mesopore size distributions ranging from 1.8-12 nm in the adsorbents still were maintained.FT-IR spectrum results further verified the successful loading of TEPA.The adsorption capacity of the adsorbents for CO_(2)were tested by using an adsorption apparatus equipped with gas chromatography.The results indicated that when the TEPA loading reached 50%,the sample exhibited the maximum adsorption value for CO_(2),reaching 4.07 mmol/g under the operation condition of 75℃and atmospheric pressure.This result could be assigned to not only the base active sites but also the coexistence of both micropore and mesopore in the adsorbent.After three cycles tests for CO_(2)capture,the adsorption value of the sample for CO_(2)can also reached 95%of its original adsorption capacity,which verified the excellent cyclic operation stability.展开更多
The selective catalytic reduction reaction belongs to the gas-solid multiphase reaction, and the adsorption of NH3 and NO on CuO/γ-Al2O3 catalysts plays an important role in the reaction. Performance of the CuO/γ-Al...The selective catalytic reduction reaction belongs to the gas-solid multiphase reaction, and the adsorption of NH3 and NO on CuO/γ-Al2O3 catalysts plays an important role in the reaction. Performance of the CuO/γ-Al2O3 catalysts was explored in a fixed bed adsorption system. The catalysts maintain nearly 100% NO conversion efficiency at 350℃. Comprehensive tests were carried out to study the adsorption behavior of NH3 and NO over the catalysts. The desorption experiments prove that NH3 and NO are adsorbed on CuO/γ-Al2O3 catalysts. The adsorption behaviors of NH3 and NO were also studied with the in-situ diffusion reflectance infrared Fourier transform spectroscopy methods. The results show that NH3 could be strongly adsorbed on the catalysts, resulting in coordinated NH3 and NH4+. NO adsorption leads to the formation of bridging bidentate nitrate, chelating bidentate nitrate, and chelating nitro. The interaction of NH3 and NO molecules with the Cu2+ present on the CAl2O3 (100) surface was investigated by using a periodic density functional theory. The results show that the adsorption of all the molecules on the Cu2+ site is energetically favorable, whereas NO bound is stronger than that of NH3 with the adsorption site, and key information about the structural and energetic properties was also addressed.展开更多
A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures an...A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures and acidities were determined by XRD and Hammett method, respectively. The activity of the catalyst was studied as function of Al 2O 3 content, calcination temperature and time in the esterification of acetic acid with butanol, and a conversion of 96 5% was obtained. The catalyst gave also higher yields in syntheses of ketals and acetals: cyclohexanone ethylene ketal(86 2%), acetophenone ethylene ketal(78 5%), acetylacetic ester ketal(88 5%), benzaldehyde glycol acetal(76 3%). The chemical structures of the products were confirmed by IR spectra.展开更多
基金National Natural Science Foundation of China(51966002)Natural Science Foundation of Guangxi Province(2020GXNSFAA159144)。
文摘Adsorption by solid amine adsorbent is a promising technology for decarbonization of flue gas.However,adsorption properties of many solid amine adsorbents need to be enhanced,and it is necessary to further study the CO_(2)adsorption mechanism.A novel CO_(2)adsorbent with high capacity was obtained by grafting 3-aminopropyltriethoxysilane(APTES)on a micro-mesoporous composite molecular sieve ZSM-5/MCM-48 as the support,and then impregnated with tetraethylenepentamine(TEPA)or polyethyleneimine(PEI).The maximum adsorption capacity of APTES-ZSM-5/MCM-48-TEPA-60(A-ZM-T60),loaded with 60%(in mass)TEPA,for CO_(2)reaches 5.82 mmol·g^(-1) at 60℃in 15%(in volume)CO_(2).Carbamate,alkyl ammonium carbamate and carbonate are generated during the chemical adsorption,which is dominant for CO_(2)adsorption because of the reaction between CO_(2)and amino groups on the adsorbent,simultaneously accompanied by weak physical adsorption.All above data confirm that these composites display an outstanding adsorption performance with a bright future for CO_(2)capture from flue gas after desulfurization.
基金supported by the National Natural Science Foundation of China(22168032)the National Key Research and Development Program of China(2023YFC3904302,2023YFB4103500)the Key Projects of Ning Dong Energy and Chemical Industry Base(2023NDKJXMLX022).
文摘A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorption capacity of the adsorbent was further enhanced by taking advantage of the nitrogenous bases contained in the BA.In the hydrothermal process,the addition of BA significantly increased the content of pyrrole nitrogen in the adsorbent.In the activation process,pyrrole nitrogen gradually changed into pyridine nitrogen and graphite nitrogen.Increased BA addition result in a higher specific surface area and microporosity of the adsorbent.The CO_(2)adsorption performance test proved that the CGFS-50%-CA sample has the strongest CO_(2)adsorption capacity at low temperature,up to 15.59 cm^(3)/g,which is mainly through physical adsorption,and the CGFS-10%-CA sample has the strongest CO_(2)adsorption capacity at high temperature,up to 7.31 cm^(3)/g,which is mainly through chemical adsorption.CO_(2)uptake of the CGFS-10%-CA sample was well maintained after 10 cycles,with regeneration efficiencies above 99%.The results indicate that the novel adsorbents with coexistence of physical and chemical adsorption have great potential for CO_(2)adsorption applications.
基金Project(12JJ8016)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(CX2012B317)supported by Hunan Provincial Innovation Foundation For Postgraduate,ChinaProject(2006180)supported by the Hunan Key Discipline Construction Found of Environmental Science,China
文摘In order to greatly improve adsorption capacity, the diatomite was pillared by polyhydroxyl-aluminum.A series of adsorption tests were conducted to obtain the optimum condition for pillared diatomite synthesis. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), surface area and porosity analyzer and micro-electrophoresis were used to determine pore structure and surface property.The pillared diatomite attaining the optimal adsorption densities (qe) of Pb^2+ and Cd^2+ was synthesized with the following conditions: Addition of pillaring solution containing Al3+-oligomers with a concentration range of 0.1-0.2 mol/L to a suspension containing Na+-diatomite to obtain the required Al/diatomite ratio of 10 mmol/g; synthesis temperature of 80 ℃ for 120 min; aging at a temperature of 105 ℃ for 16 h. The adsorption capacities of Pb^2+ and Cd^2+ on pillared diatomite increase by 23.79% and 27.36% compared with natural diatomite, respectively. The surface property of pillared diatomite is more favorable for ion adsorption than natural diatomite. The result suggests that diatomite can be modified by pillaring with polyhydroxyl-aluminum to improve its adsorption properties greatly.
基金Project (200065) supported by University Key Teacher Foundation of the Ministry of Education of China
文摘Pb2+ and Cd2+ in leachate were adsorbed on clay-solidified grouting curtain for waste landfills with equilibrium experiment. The cation exchange capacity was determined with ammonium acetate. And the concentration of heavy metal cations in leachate was determined with atomic absorption spectrophotometer. Their equilibrium isotherms were measured, and the experimental isotherm data were analyzed by using Freundlich and Langmuir models. The results show that the adsorption capacities of the heavy metal cations are closely related to the compositions of clay-solidified grouting curtain, and the maximum adsorption appears at the ratio of cement to clay of 2∶4 in the experimental conditions. At their maximum adsorption and pH 5.0, the adsorption capacities of Pb 2+ and Cd 2+ are 16.19mg/g and 1.21mg/g. The competitive adsorption coefficients indicate that the adsorption of clay-solidified grouting curtain for Pb2+ is stronger than that for Cd 2+ . The adsorption process conforms to Freundlich’s model with related coefficient higher than 0.996.
基金Project(19B126)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(21772035)supported by the National Natural Science Foundation of China+1 种基金Projects(2018JJ3099,2019JJ40058)supported by the Provincial Natural Science Foundation of Hunan,ChinaProject supported by the Innovation and Entrepreneurship Training Program of Hunan Institute of Engineering,China。
文摘To improve the adsorption performance and simplify uranium separation from aqueous media in post-treatment processes,a magnetic CoFe_(2)O_(4)@rGO composite was synthesized by microwave-hydrothermal method.The results of XRD,Raman,TEM/HRTEM,FTIR,BET and VSM characterization show that spinel-type cobalt ferrite CoFe_(2)O_(4) nanoparticles ca.13.4 nm in size are dispersedly anchored on the graphene sheet,and the saturation magnetization of the nanocomposite is 46.7 mA/(m^(2)·g).The effects of different pH,initial concentration and other conditions on uranium adsorption capacity were investigated,and adsorption kinetics equations were fitted to determine the adsorption behaviour of uranium on CoFe_(2)O_(4)@rGO in simulated uranium-containing seawater.It was observed that the uranium adsorption capacity of CoFe_(2)O_(4)@rGO composite at pH=5 is 127.6 mg/g,which is 1.31 and 2.43 times that of rGO and pure CoFe_(2)O_(4).The adsorption process conforms to Langmuir and quasi-second-order kinetic model.The excellent adsorption performance of CoFe_(2)O_(4)@rGO makes it potentially useful in the treatment of uranium-polluted water.
基金Project(SK201109) supported by the Basic Scientific Study Funding from Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological SciencesProject(2010CB428806-2) supported by the National Basic Research Program of China
文摘Pb2+ adsorption onto a soil by irrigation of sewage in the Pearl River Delta of South China was examined as a function of the reaction time, solution pH, initial lead concentration, organic matter (humic acid) and competitive ions (Cu2+). The adsorption of Pb2+ onto the soil was investigated on batch equilibrium adsorption experiments. Results show that the Pb2+ adsorption on the soil is relatively rapid in the first 30 min and reaches equilibrium at 2 h, and the kinetics of the adsorption process on the soil is well characterized by the pseudo-second order reaction rate. Langmuir, Freundlich and Temkin isothermal models are fit for the adsorption of Pb2+ onto the soil, and the maximum amount of Pb2+ adsorption (Qm) is 7.47 mg/g. The amount of Pb2+ adsorption increases with increasing the pH at the range of 1.2-4.5 and reaches a plateau at the range of 4.5-12. The presence of humic acid in soil decreases the adsorption of Pb2+ onto the soil at solution pH of 8 since the negatively charged humic acid with Pb2+ is difficult to be adsorbed on the negatively charged soil surface. The adsorption of Pb2+ onto the soil also decreases in the presence of Cu2+ due to file competition adsorption between Pb2+ and Cu2+.
基金Project(2008F70059) supported by the Scientific and Technological Research Planning of Zhejiang Province, China
文摘The adsorption properties of a novel macroporous weak acid resin (D152) for Pb^2+ were investigated with chemical methods. The optimal adsorption condition of D152 resin for Pb^2+ is at pH 6.00 in HAc-NaAc medium. The statically saturated adsorption capacity is 527 mg/g at 298 K. Pb^2+ adsorbed on D152 resin can be eluted with 0.05 mol/L HCI quantitatively. The adsorption rate constants determined under various temperatures are k288 n=2.22×10-5 s^-1, k298 K=2.51 × 10^-5 s^-1, and k308 K= 2.95 × 10^-5 s^-1, respectively. The apparent activation energy, Ea is 10.5 kJ/mol, and the adsorption parameters of thermodynamics are ΔH^Θ=13.3 kJ/mol, ΔS^Θ=119 J/(mol·K), and ΔG^Θ298 K =-22.2 kJ/mol, respectively. The adsorption behavior of D152 resin for Pb^2+ follows Langmuir model.
基金Project(2005CB623701) supported by the Major State Basic Research Development Program of China
文摘The adsorption behavior of Pb2+ and Cd2+ ions on bauxite flotation tailings was investigated to demonstrate the adsorptivity of the bauxite flotation tailings.The adsorption percentage of Pb2+ and Cd2+ ions as a function of adsorbent dosage,solution pH value and shaking time were determined by batch experiments.The maximum adsorption percentage of 99.93% for Pb2+ ions and 99.75% for Cd2+ ions were obtained by using bauxite flotation tailings as adsorbent.The methods,such as zeta potentials,specific surface area measurements and the analysis of adsorption kinetics,were introduced to analyze the adsorption mechanisms of the Pb2+ ions on bauxite flotation tailings.The isoelectric point of bauxite flotation tailings shifts from 3.6 to 5.6 in the presence of Pb2+ ions.The specific surface area of bauxite flotation tailings changes from 12.57 to 20.63 m2/g after the adsorption of Pb2+ ions.These results indicate that a specific adsorption of the cation species happens on the surface of bauxite flotation tailings.Adsorption data of Pb2+ ions on the surface of bauxite flotation tailings can be well described by Langmuir model,and the pseudo-second-order kinetic model provides the best correlation for the adsorption data of Pb2+ and Cd2+ ions on bauxite flotation tailings.
基金Project(708049) supported by the Important Item Cultivation Foundation of Scientific Innovation Project of Colleges and Universities of China
文摘A novel chelating resin with sulfonic group was synthesized by chemical modification of D401 resin with sulphonation reaction and characterized by FT-IR spectrometry. The adsorption properties of the novel chelating resin for Pb2+ were studied by batch adsorption, and the adsorption process was analyzed from thermodynamics and kinetics aspects. The adsorption mechanism of Pb2+ on the modified D401 chelating resin was discussed by FT-IR spectrometry. Experimental results show that in the Pb2+ concentration range of 200-400 mg/L, the adsorption capacities of the modified D401 chelating resin for Pb2+ increase by 77%-129%, and Langmuir isothermal adsorption model is more suitable for the equilibrium adsorption data. Adsorption is an endothermic process that runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best pH value under adsorption condition is 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the adsorption capacity remains stable after five consecutive adsorption-desorption cycles. The maximal static saturated adsorption capacity of the resin is 206 mg/g at 333 K in the Pb2+ concentration range of 200-400 mg/L. The modified D401 chelating resin is an efficient adsorbent for the removal of Pb2+ from its single-metal ion solution.
基金supported by Shanxi Provincial Key Research and Development Project(202102090301026)Graduate Education Innovation Project of Taiyuan University of Science and Technology(SY2023024)。
文摘Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent materials were successfully synthesized by loading TEPA onto the pore MgO/ZrO_(2)carriers in the paper.The pore structure and surface characteristic of the samples were analyzed by using XRD,BET,FT-IR and SEM.The adsorbent materials exhibited microcrystalline state,and the crystallinity of all samples gradually decreased as the increase of TEPA content.The pore structure analysis indicated that the modification of MgO-ZrO_(2)adsorbents with TEPA led to the decrease of the specific surface areas,but the narrow micro-mesopore size distributions ranging from 1.8-12 nm in the adsorbents still were maintained.FT-IR spectrum results further verified the successful loading of TEPA.The adsorption capacity of the adsorbents for CO_(2)were tested by using an adsorption apparatus equipped with gas chromatography.The results indicated that when the TEPA loading reached 50%,the sample exhibited the maximum adsorption value for CO_(2),reaching 4.07 mmol/g under the operation condition of 75℃and atmospheric pressure.This result could be assigned to not only the base active sites but also the coexistence of both micropore and mesopore in the adsorbent.After three cycles tests for CO_(2)capture,the adsorption value of the sample for CO_(2)can also reached 95%of its original adsorption capacity,which verified the excellent cyclic operation stability.
基金Projects(50806025, 51021065, 50976038) supported by the National Natural Science Foundation of ChinaProject(20100480893) supported by the China Postdoctoral Science FoundationProject(1001022B) supported by the Postdoctoral Research Fund of Jiangsu Province, China
文摘The selective catalytic reduction reaction belongs to the gas-solid multiphase reaction, and the adsorption of NH3 and NO on CuO/γ-Al2O3 catalysts plays an important role in the reaction. Performance of the CuO/γ-Al2O3 catalysts was explored in a fixed bed adsorption system. The catalysts maintain nearly 100% NO conversion efficiency at 350℃. Comprehensive tests were carried out to study the adsorption behavior of NH3 and NO over the catalysts. The desorption experiments prove that NH3 and NO are adsorbed on CuO/γ-Al2O3 catalysts. The adsorption behaviors of NH3 and NO were also studied with the in-situ diffusion reflectance infrared Fourier transform spectroscopy methods. The results show that NH3 could be strongly adsorbed on the catalysts, resulting in coordinated NH3 and NH4+. NO adsorption leads to the formation of bridging bidentate nitrate, chelating bidentate nitrate, and chelating nitro. The interaction of NH3 and NO molecules with the Cu2+ present on the CAl2O3 (100) surface was investigated by using a periodic density functional theory. The results show that the adsorption of all the molecules on the Cu2+ site is energetically favorable, whereas NO bound is stronger than that of NH3 with the adsorption site, and key information about the structural and energetic properties was also addressed.
文摘A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures and acidities were determined by XRD and Hammett method, respectively. The activity of the catalyst was studied as function of Al 2O 3 content, calcination temperature and time in the esterification of acetic acid with butanol, and a conversion of 96 5% was obtained. The catalyst gave also higher yields in syntheses of ketals and acetals: cyclohexanone ethylene ketal(86 2%), acetophenone ethylene ketal(78 5%), acetylacetic ester ketal(88 5%), benzaldehyde glycol acetal(76 3%). The chemical structures of the products were confirmed by IR spectra.