Objective To prospectively evaluate the efficacy of Removing Stasis and Reducing Heat Formula in accelerating calculus clearance and improving lower urinary tract symptoms of patients with proximal ureteral calculi af...Objective To prospectively evaluate the efficacy of Removing Stasis and Reducing Heat Formula in accelerating calculus clearance and improving lower urinary tract symptoms of patients with proximal ureteral calculi after ureteroscopic Ho:YAG laser lithotripsy. Methods A total of 138 patients with proximal ureteral calculi underwent ureteroscopic Ho:YAG laser lithotripsy by a single endocrinologist. Stone size varied from 10 to 15 mm. After operation, the patients were randomly divided into three groups: the control group(group A), tamsulosin group(group B), and Removing Stasis and Reducing Heat Formula group(group C). The treatment lasted for 4 weeks or until stone clearance. The primary and secondary outcomes of the three groups at follow-up were assessed. Results Of the 131 patients available for follow-up, 44 cases were in the group A, 45 in the group B, and 42 in the group C, respectively. The stone free rate at 2 weeks in the groups B and C were significantly higher than that in the group A(95.56%, 97.62% vs. 79.55%; all P<0.05). The ureteral colic rate and mean time of fragment expulsion were significantly reduced in the groups B(4.44% and 7.86±4.99 days) and C(2.43% and 6.76±4.37 days) compared with the group A(22.73% and 11.54±9.89 days, all P<0.05). On the day of double-J ureteric stent removal, the group C differed significantly from the group A in the total International Prostate Symptom Score, irritative subscore, obstructive subscore, and quality of life score(all P<0.05). Conclusion Removing Stasis and Reducing Heat Formula in the medical expulsive therapy might be an effective modality for patients with calculus in the proximal uretera after ureteroscopic Ho:YAG laser lithotripsy.展开更多
Spectroscopic properties of flashlamp pumped Nd^3+:YAG laser are studied as a function of temperature in a range from-30℃ to 60℃. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission wit...Spectroscopic properties of flashlamp pumped Nd^3+:YAG laser are studied as a function of temperature in a range from-30℃ to 60℃. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of ^4F3/2→^4I9/2are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature.The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is,thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state.展开更多
A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength oper...A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.展开更多
This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power...This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed. For approximate cutting depth, a theoretical study is conducted in terms of material property and cutting speed. Results show a nonlinear relation between the cutting depth and input energy. There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s. An extra energy is utilized in the deep cutting. It is inferred that as the laser power increases, cutting depth increases. The experimental outcomes are in good agreement with theoretical results. This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting, scribing, trimming, engraving, and marking nonmetallic materials.展开更多
A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at...A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at the pump power of 16.65 W, corresponding to an optical-to-optical conversion efficiency of 16.4%. At the same time, the pulse width, pulse repetition rate, single pulse energy and peak power are 27.2ns, 9 kHz, 303.3#3 and 11.2kW, respectively. As far as we know, the result gives the highest average output power at 1112nm generated by an 808 nm diode-end-pumped Nd:YAG laser.展开更多
We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switch...We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configu- ration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.展开更多
Laser transformation hardening (LTH) was applied to the surface of the AISI 420 martensitic stainless steel by a pulsed Nd:YAG laser to obtain optimum hardness. The influences of process parameters (laser pulse en...Laser transformation hardening (LTH) was applied to the surface of the AISI 420 martensitic stainless steel by a pulsed Nd:YAG laser to obtain optimum hardness. The influences of process parameters (laser pulse energy, duration time, and travel speed) on the depth and hardness of laser treated area were investigated. Image analysis of SEM microstructure of AISI 420 showed that plate-like carbide have almost fully and (30-40)% of globular carbide particles dissolved into the matrix after laser transformation hardening by pulsed laser and the microstructure was refined to obtain controlled tempered martensite microstructure with 450 VHN hardness.展开更多
We present a Tm-doped fiber laser pumped Fabry-Perot etalons Ho:YAG laser based on a corner cube. A maximum single-longitudinal-mode and fundamental transverse mode output power of 478 m W at the wavelength of 2091.0...We present a Tm-doped fiber laser pumped Fabry-Perot etalons Ho:YAG laser based on a corner cube. A maximum single-longitudinal-mode and fundamental transverse mode output power of 478 m W at the wavelength of 2091.06 nm is achieved with a pump power of 16.3 W, corresponding to an optical-to-optical efficiency of 2.9% and a slope efficiency of 7.9%. The single-longitudinal-mode and fundamental transverse mode are less sensitive to the rotating of the corner cube. The results indicate the potential impact of a single-longitudinal-mode Ho: YA G laser with corner cube geometry to improve the anti-maladjustment stability.展开更多
A linearly polarized operation Ho: YAG laser at 2090.5 nm with a corner cube cavity is demonstrated. A polarizer with high reflectivity for the s-polarized light at the laser wavelength is employed to achieve a linea...A linearly polarized operation Ho: YAG laser at 2090.5 nm with a corner cube cavity is demonstrated. A polarizer with high reflectivity for the s-polarized light at the laser wavelength is employed to achieve a linearly polarized laser. In the same case of resonator length, the corner cube can be used to cut the volume of the Ho:YAG laser and to enhance the stability of the system. The maximum linearly polarized output power of 5.8 W is achieved at the absorbed pump power of 23.3 W, corresponding to a slope efficiency of 29.7%, and the optical-optical conversion efficiency is around 24.9%. The M2 factors of the 2.09μm laser are 2.4 and 1.2 along the horizontal and vertical directions, respectively.展开更多
This paper demonstrates the influence of external optical feedback on the polarization state of longitudinal modes in quasi-isotropic microchip Nd:YAG lasers. Under optical feedback, the polarization state of longitu...This paper demonstrates the influence of external optical feedback on the polarization state of longitudinal modes in quasi-isotropic microchip Nd:YAG lasers. Under optical feedback, the polarization state of longitudinal modes in quasi-isotropic lasers relies strongly on the intracavity anisotropy loss and mode competition. When the intracavity anisotropy loss is small, external optical feedback can cause polarization switching and strong mode competition between two orthogonal linearly polarized eigenstates of one laser longitudinal mode, which leads to the distortion of laser intensity modulation waveform. The polarization switching is independent of the initial external cavity length. By increasing the intracavity anisotropy loss, one polarization eigenstate can be suppressed and the laser works in single-polarization state. A theoretical analysis based on the compound cavity model is presented, which is in good agreement with the experimental results. The results offer guidance to the development of laser feedback interferometers.展开更多
A hybrid-pumped Nd:YAG pulse laser with a double-pass two-rod configuration is presented. The focal length of offset lens is particularly studied to compensate for the thermal lens effect and depolarization. For inpu...A hybrid-pumped Nd:YAG pulse laser with a double-pass two-rod configuration is presented. The focal length of offset lens is particularly studied to compensate for the thermal lens effect and depolarization. For input pulse energy of 141 μJ with pulse duration of 754ps, the pulse laser system delivers 526mJ pulse energy and 728ps pulse width output at lO Hz with pulse profile shape preservation. The energy stability of the laser pulse is less than 3%, and the beam quality factor M2 is less than 2.26.展开更多
The influence of pumping laser pulse on the property of quasi-continuous-wave(QCW)diode-side-pumped Nd:YAG laser is investigated theoretically and experimentally.Under remaining a fixed duty cycle,the average output p...The influence of pumping laser pulse on the property of quasi-continuous-wave(QCW)diode-side-pumped Nd:YAG laser is investigated theoretically and experimentally.Under remaining a fixed duty cycle,the average output power increases,and the corresponding thermal focal length shorten with the increase of the pump pulse duration,which attributes to the decrease of the ratio of pulse buildup time to the pulse duration.At a pump power of 146 W,the laser output power changes from 65.1 W to 81.2 W when the pulse duration is adjusted from 150μs to 1000μs,confirming a significant enhancement of 24.7%.A laser rate equation model incorporating the amplified spontaneous emission is also utilized and numerically solved,and the simulated results agree well with the experimental data.展开更多
We report a diode-pumped rod-type Yb:YAG laser amplifier operating at 1 kHz.Cryogenic cooling method was adopted to make the Yb:YAG crystal work with four-level behavior.A single-frequency fiber laser acts as the seed...We report a diode-pumped rod-type Yb:YAG laser amplifier operating at 1 kHz.Cryogenic cooling method was adopted to make the Yb:YAG crystal work with four-level behavior.A single-frequency fiber laser acts as the seed in an actively Q-switched Yb:YAG oscillator.The resonator delivers 5.75-mJ pulses at 1 kHz with a pulse duration of approximately 40 ns.The pulses were amplified to 61 mJ in a four-pass rod-type Yb:YAG amplifier with optical-to-optical efficiency of 24%in the main amplifier.The M^(2)parameter of the output laser is<1.4.展开更多
Objective.To study the mechanism and effects of blood perfusion on acute ischemic region of myocardium through channel created by Ho- Yag laser and True- cut biopsy needles with myocardial contrast echocardiography. M...Objective.To study the mechanism and effects of blood perfusion on acute ischemic region of myocardium through channel created by Ho- Yag laser and True- cut biopsy needles with myocardial contrast echocardiography. Methods. We partially ligated the left anterior descending coronary artery of canine hearts between the lst and 2nd diagonal branches to produce two groups of acute myocardial ischemia models and then performed tran- smyocardial revascularization (TMR) on this region with Ho- Yag laser and True- cut biopsy needles. Myocardial contrast echocardiography was performed with a new generation of ultrasound contrast agent and second harmonic imaging of this region before, during ischemia and after revascularization. Pictures were taken with“ R” wave trigger skill. Results. Acoustic density (dB) in the ischemic region (anterior wall) with myocardial contrast echocardiography decreased obviously after the left anterior descending artery was ligated (Laser group: 5.40± 1.81, Needle group: 7.11± 2.51) compared with that before (Laser group: 11.69± 1.61, Needle group: 12.96± 2.88, P< 0.01). dB increased remarkably after TMR by either laser or True cut biopsy needle (Laser group: 11.02± 2.01, Needle group: 10.01± 4.45. P< 0.01) compared to that during ischemia and approximated to that before ischemia (P >0.05). We found that the acoustic density of the contrast developed one picture (one cardiac cycle) ahead in the transmyocardial revascularization region than that in the lateral and other region of the left ventricle wall in the scan of both groups. Conclusions. Acute ischemic myocardium can be perfused immediately by oxygenated blood from the left ventricle through channels created with both Ho- Yag laser and True- cut biopsy needles. Evidence of blood perfusion through these channels mainly during systolic phase was detected, and myocardial contrast ultrasound using intravenous perfluorocarbon- exposed sonicated dextrose albumin was regarded as a reliable method in the study of transmyocardial revascularization.展开更多
A multipulse Nd:YAG (Neodym-yttrium aluminium garnet) laser Thomson scattering diagnostic system developed was recently applied on HT-7 tokamak to obtain more accurate electron temperatures. A CAMAC-based real-time...A multipulse Nd:YAG (Neodym-yttrium aluminium garnet) laser Thomson scattering diagnostic system developed was recently applied on HT-7 tokamak to obtain more accurate electron temperatures. A CAMAC-based real-time computer system for laser control, data acquisition, analysis and calibration was investigated in detail. Furthermore, the reliability and accuracy of this diagnostic system were demonstrated by comparing the results with those of a soft-X ray diagnostic system.展开更多
The influence of flux and sulfur content on YAG laser welding has been investigated, and the influencing factors and mechanism were discussed. The results show that both surface activating flux and surface active elem...The influence of flux and sulfur content on YAG laser welding has been investigated, and the influencing factors and mechanism were discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of surface tension temperature coefficient in weld pool, thus, the change of fluid flow paten in weld pool due to the flux and sulfur.展开更多
A study was performed with the objectives of understanding lap welding phenomena of Zn-coated steels with a Nd:YAG laser as well as obtaining a fundamental knowledge of monitoring signals for the formation judgment of...A study was performed with the objectives of understanding lap welding phenomena of Zn-coated steels with a Nd:YAG laser as well as obtaining a fundamental knowledge of monitoring signals for the formation judgment of sound or bad weld beads. The behavior of a molten pool and a reflected beam was simultaneously observed through a high-speed video together with the monitoring of reflected beam intensity.The effect of a gap between sheets on porosity formation and bead appearances was confirmed,and characteristic monitoring signals were obtained according to the gaps.In the case of no gap,spatters were frequently generated,and a reflected beam was fluctuated intensively at low frequencies.On the other hand,in welding sheets with a wide gap,lap welds were not produced and the high frequency signals of a reflected beam were detected.Moreover,sound welds were produced in the sheets with a proper gap,and a moderate reflected beam was monitored.From these results,it was found that monitoring of a reflected beam was beneficial to the judgment of sound,under-filled or incomplete lap welds.展开更多
We present a detailed study of a combined actively and passively Q-switched (CAPQ) laser with an acousto-optic modulator (AOM) and a codoped Cr^4+, Nd^3+ :YAG crystal The hybrid Q-switch approach is used to pro...We present a detailed study of a combined actively and passively Q-switched (CAPQ) laser with an acousto-optic modulator (AOM) and a codoped Cr^4+, Nd^3+ :YAG crystal The hybrid Q-switch approach is used to produce a short laser pulse with stable and tunable repetition rates. The timing jitter, average pulse width, and average pulse amplitude vary periodically with the AOM modulation frequency under a fixed pump power. The repetition rate of the CAPQ laser can be turned approximately from 4 kHz to 16 kHz with the jitter less than 400 ns.展开更多
This paper demonstrated a high power and high beam quality diode-pumped 1319-nm Nd:YAG master oscillator-power amplifier laser system. A thermally near-unstable resonator with four-rod birefringence compensation fiat...This paper demonstrated a high power and high beam quality diode-pumped 1319-nm Nd:YAG master oscillator-power amplifier laser system. A thermally near-unstable resonator with four-rod birefringence compensation fiat-fiat cavity was adopted as the master oscillator. A solid etalon was inserted in the unidirectional ring resonator to compress the laser linewidth. Under a repetition rate of 500 Hz and pulse width of 160 μs, the master oscillator delivers an average output power of 16.8 W at 1319 nm with linear polarisation, beam quality factor M^2=1.16 and linewidth of 3.2 GHz. A double-pass power amplifier with two amplifier stages was employed for higher power scaling and the output power was amplified to be 25.9 W with M^2 = 1.43.展开更多
文摘Objective To prospectively evaluate the efficacy of Removing Stasis and Reducing Heat Formula in accelerating calculus clearance and improving lower urinary tract symptoms of patients with proximal ureteral calculi after ureteroscopic Ho:YAG laser lithotripsy. Methods A total of 138 patients with proximal ureteral calculi underwent ureteroscopic Ho:YAG laser lithotripsy by a single endocrinologist. Stone size varied from 10 to 15 mm. After operation, the patients were randomly divided into three groups: the control group(group A), tamsulosin group(group B), and Removing Stasis and Reducing Heat Formula group(group C). The treatment lasted for 4 weeks or until stone clearance. The primary and secondary outcomes of the three groups at follow-up were assessed. Results Of the 131 patients available for follow-up, 44 cases were in the group A, 45 in the group B, and 42 in the group C, respectively. The stone free rate at 2 weeks in the groups B and C were significantly higher than that in the group A(95.56%, 97.62% vs. 79.55%; all P<0.05). The ureteral colic rate and mean time of fragment expulsion were significantly reduced in the groups B(4.44% and 7.86±4.99 days) and C(2.43% and 6.76±4.37 days) compared with the group A(22.73% and 11.54±9.89 days, all P<0.05). On the day of double-J ureteric stent removal, the group C differed significantly from the group A in the total International Prostate Symptom Score, irritative subscore, obstructive subscore, and quality of life score(all P<0.05). Conclusion Removing Stasis and Reducing Heat Formula in the medical expulsive therapy might be an effective modality for patients with calculus in the proximal uretera after ureteroscopic Ho:YAG laser lithotripsy.
基金Project supported by Estahban Branch,Islamic Azad University
文摘Spectroscopic properties of flashlamp pumped Nd^3+:YAG laser are studied as a function of temperature in a range from-30℃ to 60℃. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of ^4F3/2→^4I9/2are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature.The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is,thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632704
文摘A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.
基金supported by the Science Foundation of the Ministry of Science and Technology Malaysiathe Islamic Development Bank Jeddahsupport of the Universiti Teknologi Malaysia for this research work
文摘This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed. For approximate cutting depth, a theoretical study is conducted in terms of material property and cutting speed. Results show a nonlinear relation between the cutting depth and input energy. There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s. An extra energy is utilized in the deep cutting. It is inferred that as the laser power increases, cutting depth increases. The experimental outcomes are in good agreement with theoretical results. This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting, scribing, trimming, engraving, and marking nonmetallic materials.
基金Supported by the Natural Science Foundation of Shandong Province under Grant Nos ZR2015FM018 and ZR2014FM028the National Natural Science Foundation of China under Grant No 61475086
文摘A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at the pump power of 16.65 W, corresponding to an optical-to-optical conversion efficiency of 16.4%. At the same time, the pulse width, pulse repetition rate, single pulse energy and peak power are 27.2ns, 9 kHz, 303.3#3 and 11.2kW, respectively. As far as we know, the result gives the highest average output power at 1112nm generated by an 808 nm diode-end-pumped Nd:YAG laser.
文摘We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configu- ration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.
基金supported by the Tarbiat Modares University and Iranian National Center for Laser Science and Technology
文摘Laser transformation hardening (LTH) was applied to the surface of the AISI 420 martensitic stainless steel by a pulsed Nd:YAG laser to obtain optimum hardness. The influences of process parameters (laser pulse energy, duration time, and travel speed) on the depth and hardness of laser treated area were investigated. Image analysis of SEM microstructure of AISI 420 showed that plate-like carbide have almost fully and (30-40)% of globular carbide particles dissolved into the matrix after laser transformation hardening by pulsed laser and the microstructure was refined to obtain controlled tempered martensite microstructure with 450 VHN hardness.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009 and 61405047the China Postdoctoral Science Foundation Funded Project under Grant No 2013M540288+2 种基金the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310the Heilongjiang Postdoctoral Science Foundation Funded Project under Grant No LBH-Z14085
文摘We present a Tm-doped fiber laser pumped Fabry-Perot etalons Ho:YAG laser based on a corner cube. A maximum single-longitudinal-mode and fundamental transverse mode output power of 478 m W at the wavelength of 2091.06 nm is achieved with a pump power of 16.3 W, corresponding to an optical-to-optical efficiency of 2.9% and a slope efficiency of 7.9%. The single-longitudinal-mode and fundamental transverse mode are less sensitive to the rotating of the corner cube. The results indicate the potential impact of a single-longitudinal-mode Ho: YA G laser with corner cube geometry to improve the anti-maladjustment stability.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009 and 61405047the China Postdoctoral Science Foundation Funded Project under Grant No 2013M540288+1 种基金the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310
文摘A linearly polarized operation Ho: YAG laser at 2090.5 nm with a corner cube cavity is demonstrated. A polarizer with high reflectivity for the s-polarized light at the laser wavelength is employed to achieve a linearly polarized laser. In the same case of resonator length, the corner cube can be used to cut the volume of the Ho:YAG laser and to enhance the stability of the system. The maximum linearly polarized output power of 5.8 W is achieved at the absorbed pump power of 23.3 W, corresponding to a slope efficiency of 29.7%, and the optical-optical conversion efficiency is around 24.9%. The M2 factors of the 2.09μm laser are 2.4 and 1.2 along the horizontal and vertical directions, respectively.
基金supported by the National Natural Science Foundation of China (Grant No. 30870662)
文摘This paper demonstrates the influence of external optical feedback on the polarization state of longitudinal modes in quasi-isotropic microchip Nd:YAG lasers. Under optical feedback, the polarization state of longitudinal modes in quasi-isotropic lasers relies strongly on the intracavity anisotropy loss and mode competition. When the intracavity anisotropy loss is small, external optical feedback can cause polarization switching and strong mode competition between two orthogonal linearly polarized eigenstates of one laser longitudinal mode, which leads to the distortion of laser intensity modulation waveform. The polarization switching is independent of the initial external cavity length. By increasing the intracavity anisotropy loss, one polarization eigenstate can be suppressed and the laser works in single-polarization state. A theoretical analysis based on the compound cavity model is presented, which is in good agreement with the experimental results. The results offer guidance to the development of laser feedback interferometers.
文摘A hybrid-pumped Nd:YAG pulse laser with a double-pass two-rod configuration is presented. The focal length of offset lens is particularly studied to compensate for the thermal lens effect and depolarization. For input pulse energy of 141 μJ with pulse duration of 754ps, the pulse laser system delivers 526mJ pulse energy and 728ps pulse width output at lO Hz with pulse profile shape preservation. The energy stability of the laser pulse is less than 3%, and the beam quality factor M2 is less than 2.26.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402103)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.GJJSTD20180004)the Fund of Technical Institute of Physics and Chemistry,Chinese Academy of Sciences(Grant No.Y8A9021H11)。
文摘The influence of pumping laser pulse on the property of quasi-continuous-wave(QCW)diode-side-pumped Nd:YAG laser is investigated theoretically and experimentally.Under remaining a fixed duty cycle,the average output power increases,and the corresponding thermal focal length shorten with the increase of the pump pulse duration,which attributes to the decrease of the ratio of pulse buildup time to the pulse duration.At a pump power of 146 W,the laser output power changes from 65.1 W to 81.2 W when the pulse duration is adjusted from 150μs to 1000μs,confirming a significant enhancement of 24.7%.A laser rate equation model incorporating the amplified spontaneous emission is also utilized and numerically solved,and the simulated results agree well with the experimental data.
基金Project supported by the National National Science Foundation of China(Grant Nos.12004262 and 62005184)the Natural Science Foundation of Top Talent of SZTU(Grant No.202024555101039)。
文摘We report a diode-pumped rod-type Yb:YAG laser amplifier operating at 1 kHz.Cryogenic cooling method was adopted to make the Yb:YAG crystal work with four-level behavior.A single-frequency fiber laser acts as the seed in an actively Q-switched Yb:YAG oscillator.The resonator delivers 5.75-mJ pulses at 1 kHz with a pulse duration of approximately 40 ns.The pulses were amplified to 61 mJ in a four-pass rod-type Yb:YAG amplifier with optical-to-optical efficiency of 24%in the main amplifier.The M^(2)parameter of the output laser is<1.4.
文摘Objective.To study the mechanism and effects of blood perfusion on acute ischemic region of myocardium through channel created by Ho- Yag laser and True- cut biopsy needles with myocardial contrast echocardiography. Methods. We partially ligated the left anterior descending coronary artery of canine hearts between the lst and 2nd diagonal branches to produce two groups of acute myocardial ischemia models and then performed tran- smyocardial revascularization (TMR) on this region with Ho- Yag laser and True- cut biopsy needles. Myocardial contrast echocardiography was performed with a new generation of ultrasound contrast agent and second harmonic imaging of this region before, during ischemia and after revascularization. Pictures were taken with“ R” wave trigger skill. Results. Acoustic density (dB) in the ischemic region (anterior wall) with myocardial contrast echocardiography decreased obviously after the left anterior descending artery was ligated (Laser group: 5.40± 1.81, Needle group: 7.11± 2.51) compared with that before (Laser group: 11.69± 1.61, Needle group: 12.96± 2.88, P< 0.01). dB increased remarkably after TMR by either laser or True cut biopsy needle (Laser group: 11.02± 2.01, Needle group: 10.01± 4.45. P< 0.01) compared to that during ischemia and approximated to that before ischemia (P >0.05). We found that the acoustic density of the contrast developed one picture (one cardiac cycle) ahead in the transmyocardial revascularization region than that in the lateral and other region of the left ventricle wall in the scan of both groups. Conclusions. Acute ischemic myocardium can be perfused immediately by oxygenated blood from the left ventricle through channels created with both Ho- Yag laser and True- cut biopsy needles. Evidence of blood perfusion through these channels mainly during systolic phase was detected, and myocardial contrast ultrasound using intravenous perfluorocarbon- exposed sonicated dextrose albumin was regarded as a reliable method in the study of transmyocardial revascularization.
基金National Natural Science Foundation of China(Nos.10675126,10375068))
文摘A multipulse Nd:YAG (Neodym-yttrium aluminium garnet) laser Thomson scattering diagnostic system developed was recently applied on HT-7 tokamak to obtain more accurate electron temperatures. A CAMAC-based real-time computer system for laser control, data acquisition, analysis and calibration was investigated in detail. Furthermore, the reliability and accuracy of this diagnostic system were demonstrated by comparing the results with those of a soft-X ray diagnostic system.
文摘The influence of flux and sulfur content on YAG laser welding has been investigated, and the influencing factors and mechanism were discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of surface tension temperature coefficient in weld pool, thus, the change of fluid flow paten in weld pool due to the flux and sulfur.
文摘A study was performed with the objectives of understanding lap welding phenomena of Zn-coated steels with a Nd:YAG laser as well as obtaining a fundamental knowledge of monitoring signals for the formation judgment of sound or bad weld beads. The behavior of a molten pool and a reflected beam was simultaneously observed through a high-speed video together with the monitoring of reflected beam intensity.The effect of a gap between sheets on porosity formation and bead appearances was confirmed,and characteristic monitoring signals were obtained according to the gaps.In the case of no gap,spatters were frequently generated,and a reflected beam was fluctuated intensively at low frequencies.On the other hand,in welding sheets with a wide gap,lap welds were not produced and the high frequency signals of a reflected beam were detected.Moreover,sound welds were produced in the sheets with a proper gap,and a moderate reflected beam was monitored.From these results,it was found that monitoring of a reflected beam was beneficial to the judgment of sound,under-filled or incomplete lap welds.
文摘We present a detailed study of a combined actively and passively Q-switched (CAPQ) laser with an acousto-optic modulator (AOM) and a codoped Cr^4+, Nd^3+ :YAG crystal The hybrid Q-switch approach is used to produce a short laser pulse with stable and tunable repetition rates. The timing jitter, average pulse width, and average pulse amplitude vary periodically with the AOM modulation frequency under a fixed pump power. The repetition rate of the CAPQ laser can be turned approximately from 4 kHz to 16 kHz with the jitter less than 400 ns.
基金Project supported by the National High Technology Research and Development Program and the National Natural Science Foundation of China (Grant No. 60508013)
文摘This paper demonstrated a high power and high beam quality diode-pumped 1319-nm Nd:YAG master oscillator-power amplifier laser system. A thermally near-unstable resonator with four-rod birefringence compensation fiat-fiat cavity was adopted as the master oscillator. A solid etalon was inserted in the unidirectional ring resonator to compress the laser linewidth. Under a repetition rate of 500 Hz and pulse width of 160 μs, the master oscillator delivers an average output power of 16.8 W at 1319 nm with linear polarisation, beam quality factor M^2=1.16 and linewidth of 3.2 GHz. A double-pass power amplifier with two amplifier stages was employed for higher power scaling and the output power was amplified to be 25.9 W with M^2 = 1.43.