Nickel-palladium film on p-Si prepared by potential -controlled electrodeposition has much better adherence than that deposited by other methods .To reveal the reasons of this effect ,X-ray photoelectron spectroscopy ...Nickel-palladium film on p-Si prepared by potential -controlled electrodeposition has much better adherence than that deposited by other methods .To reveal the reasons of this effect ,X-ray photoelectron spectroscopy (XPS) combmed with Ar+sput tering was used to investigate the interface of NiPd /Si .The results showed that dramatic interdiffusion of Ni, Pd and Si had occurred at atmospheric temperature .On the XPS spectra of mckel and palladium ,there are two kinds of binding energy ,contributed by pure metals and metal silicide respectively. NiSi, PdSi and Pd2Si were formed at the interface. Both of the electric field on the surface and the H atoms in the metal lattice have the possibility to promote reactions between nickel or palladium and silicon .展开更多
The interracial structure of hard and soft oxides grown by dry oxidation on<100> n-type silicon substrates is examined using high resolution mild X-ray photoelectron spectroscopy (XPS) before and after irradiati...The interracial structure of hard and soft oxides grown by dry oxidation on<100> n-type silicon substrates is examined using high resolution mild X-ray photoelectron spectroscopy (XPS) before and after irradiation. Substantial differences in silicon of silica state (B.E. 103.4 eV), silicon of transitional state (B.E. 101.5 eV), surplus oxygen (B.E. 529.6 eV) and negative two-valence oxygen (B.E. 531.4 eV) are observed between the two kinds of samples. The XPS spectra strongly depend on the conditions of irradiation for soft samples, but do not as remarkablely as soft samples for hard samples. The effects of irradiation doses on XPS are greater than that of irradiation bias fields. Some viewpoints of irradiation induced hole electron pair are proposed to explain the results.展开更多
Microwave Electron Cyclotron Resonance (ECR) Plasma assisted Chemical Vapor Deposition (CVD) technology has been used to prepare Si3N4 films, which were analyzed by using infrared (IR) transmission spectroscopy and XP...Microwave Electron Cyclotron Resonance (ECR) Plasma assisted Chemical Vapor Deposition (CVD) technology has been used to prepare Si3N4 films, which were analyzed by using infrared (IR) transmission spectroscopy and XPS. The analysis results show that with the increase of the deposition temperature, the H content decreases, and the densification of the film increases.When the temperature is up to 360℃, the stoichiometrical rate of Si:N is close to 0.75. The protective property of Si3N4 films is also examined.展开更多
The damage on the atomic bonding and electronic state in a SiO_x(1.4-2.3 nm)/c-Si(150 μm) interface has been investigated.This occurred in the process of depositing indium tin oxide(ITO) film onto the silicon s...The damage on the atomic bonding and electronic state in a SiO_x(1.4-2.3 nm)/c-Si(150 μm) interface has been investigated.This occurred in the process of depositing indium tin oxide(ITO) film onto the silicon substrate by magnetron sputtering.We observe that this damage is caused by energetic particles produced in the plasma(atoms,ions,and UV light).The passivation quality and the variation on interface states of the SiO_x/c-Si system were mainly studied by using effective minority carrier lifetime(τ_(eff)) measurement as a potential evaluation.The results showed that the samples' τ_(eff)was reduced by more than 90%after ITO formation,declined from 107 μs to 5 μs.Following vacuum annealing at 200 ℃,the τ_(eff) can be restored to 30 μs.The components of Si to O bonding states at the SiO_x/c-Si interface were analyzed by x-ray photoelectron spectroscopy(XPS) coupled with depth profiling.The amorphous phase of the SiO_x layer and the "atomistic interleaving structure" at the SiO_x/c-Si interface was observed by a transmission electron microscope(TEM).The chemical configuration of the Si-O fraction within the intermediate region is the main reason for inducing the variation of Si dangling bonds(or interface states) and effective minority carrier lifetime.After an appropriate annealing,the reduction of the Si dangling bonds between SiO_x and near the c-Si surface is helpful to improve the passivation effect.展开更多
文摘Nickel-palladium film on p-Si prepared by potential -controlled electrodeposition has much better adherence than that deposited by other methods .To reveal the reasons of this effect ,X-ray photoelectron spectroscopy (XPS) combmed with Ar+sput tering was used to investigate the interface of NiPd /Si .The results showed that dramatic interdiffusion of Ni, Pd and Si had occurred at atmospheric temperature .On the XPS spectra of mckel and palladium ,there are two kinds of binding energy ,contributed by pure metals and metal silicide respectively. NiSi, PdSi and Pd2Si were formed at the interface. Both of the electric field on the surface and the H atoms in the metal lattice have the possibility to promote reactions between nickel or palladium and silicon .
基金This work was supported by Beijing Zhongguancun Associated Center of Analysis and Measurement
文摘The interracial structure of hard and soft oxides grown by dry oxidation on<100> n-type silicon substrates is examined using high resolution mild X-ray photoelectron spectroscopy (XPS) before and after irradiation. Substantial differences in silicon of silica state (B.E. 103.4 eV), silicon of transitional state (B.E. 101.5 eV), surplus oxygen (B.E. 529.6 eV) and negative two-valence oxygen (B.E. 531.4 eV) are observed between the two kinds of samples. The XPS spectra strongly depend on the conditions of irradiation for soft samples, but do not as remarkablely as soft samples for hard samples. The effects of irradiation doses on XPS are greater than that of irradiation bias fields. Some viewpoints of irradiation induced hole electron pair are proposed to explain the results.
文摘Microwave Electron Cyclotron Resonance (ECR) Plasma assisted Chemical Vapor Deposition (CVD) technology has been used to prepare Si3N4 films, which were analyzed by using infrared (IR) transmission spectroscopy and XPS. The analysis results show that with the increase of the deposition temperature, the H content decreases, and the densification of the film increases.When the temperature is up to 360℃, the stoichiometrical rate of Si:N is close to 0.75. The protective property of Si3N4 films is also examined.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61274067,60876045,and 61674099)the Research and Development Foundation of SHU-SOENs PV Joint Laboratory,China(Grant No.SS-E0700601)
文摘The damage on the atomic bonding and electronic state in a SiO_x(1.4-2.3 nm)/c-Si(150 μm) interface has been investigated.This occurred in the process of depositing indium tin oxide(ITO) film onto the silicon substrate by magnetron sputtering.We observe that this damage is caused by energetic particles produced in the plasma(atoms,ions,and UV light).The passivation quality and the variation on interface states of the SiO_x/c-Si system were mainly studied by using effective minority carrier lifetime(τ_(eff)) measurement as a potential evaluation.The results showed that the samples' τ_(eff)was reduced by more than 90%after ITO formation,declined from 107 μs to 5 μs.Following vacuum annealing at 200 ℃,the τ_(eff) can be restored to 30 μs.The components of Si to O bonding states at the SiO_x/c-Si interface were analyzed by x-ray photoelectron spectroscopy(XPS) coupled with depth profiling.The amorphous phase of the SiO_x layer and the "atomistic interleaving structure" at the SiO_x/c-Si interface was observed by a transmission electron microscope(TEM).The chemical configuration of the Si-O fraction within the intermediate region is the main reason for inducing the variation of Si dangling bonds(or interface states) and effective minority carrier lifetime.After an appropriate annealing,the reduction of the Si dangling bonds between SiO_x and near the c-Si surface is helpful to improve the passivation effect.