A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fibe...A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.展开更多
In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
[目的/意义]苹果“冰糖心”又称水心病,是一种常见的果实病害,严重的水心病果会随着储藏时间的增加发生霉变,造成食品安全隐患。为实现不同等级水心病苹果快速无损检测,本研究旨在构建有效的分级与可溶性固形物(Soluble Solids Content,...[目的/意义]苹果“冰糖心”又称水心病,是一种常见的果实病害,严重的水心病果会随着储藏时间的增加发生霉变,造成食品安全隐患。为实现不同等级水心病苹果快速无损检测,本研究旨在构建有效的分级与可溶性固形物(Soluble Solids Content,SSC)预测模型。[方法]本研究选取了230个富士苹果,其中正常、轻度、中度、重度水心苹果数量分别为113、61、47和9个,分别采集了400~1000 nm范围的反射光谱和X射线计算机断层成像(X-ray Computed Tomography,X-ray CT)数据,并测定了SSC含量。[结果和讨论]SSC随水心程度加剧呈上升趋势,重度水心苹果呈现更高的光谱反射率,X-ray CT扫描成像观察到水心区域的组织体积平均密度高于健康组织,基于三维重建算法实现不同等级水心苹果内部水心组织可视化分布。基于偏最小二乘判别分析(Partial Least Squares Discriminant Analysis,PLSDA)构建的不同水心程度苹果果实分级模型建模集和测试集准确率分别为98.7%和95.9%;构建不同水心程度苹果果实SSC回归模型,校正集决定系数(Correlation Coefficient of Calibration,R_(C)^(2))为0.962,均方根误差(Root Mean Squares Error of Calibration,RMSEC)为0.264,测试集决定系数(Correlation Coefficient of Prediction,R_(P)^(2))为0.879,均方根误差(Root Mean Squares Error of Prediction,RMSEP)为0.435。[结论]该研究构建的不同水心程度苹果果实分级模型能够实现苹果不同等级水心病的预测,构建的不同水心程度苹果果实SSC回归模型能够较好地预测苹果果实的SSC,为苹果水心病无损检测和品质评估提供了有效方法。展开更多
A new interferometer for extreme ultraviolet (EUV) radiation with a laser produced plasma (LPP) laboratory source is under construction. The LPP source is operated with a Sn solid rod target on which pulsed YAG laser ...A new interferometer for extreme ultraviolet (EUV) radiation with a laser produced plasma (LPP) laboratory source is under construction. The LPP source is operated with a Sn solid rod target on which pulsed YAG laser is focused to produce high temperature plasma emitting EUV radiation. The source is equipped with a newly designed debris stopper protecting a condenser multilayer mirror from the particle debris of the target. The condenser mirror focuses the light onto an EUV beam-splitter to form transmitted and reflected paths for producing interference fringes of a sharing type. The optical configuration is of a common path based on a triangular path type with a focusing at the beam-splitter, which is enabled to produce fringes by a low coherence radiation with a standard optical quality beam-splitter. The fringes are recorded by an imaging plate with pixels as small as 25μm. The dynamic range of linearity in detection of the EUV light was found to be more than 10 4 with sensitivity of 10 4 photons/pixel, enough for the purpose of interferogram recording, possibly with one laser shot.展开更多
The method and experimental results of measuring a small vibrating displacement by laser interferometer are introduced in this paper. The dynamic response of a new kind of tiny piezoelectric driver is detected. Result...The method and experimental results of measuring a small vibrating displacement by laser interferometer are introduced in this paper. The dynamic response of a new kind of tiny piezoelectric driver is detected. Results show that this kind of PZN-PZT tiny driver not only has high voltage-displacement sensitivity, but also its frequency response approaches to 1 kHz.Therefore this kind of piezoelectric driver can be used widely in many fields.展开更多
Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific c...Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific ca⁃pacity of MXene materials limit their further utilization.In this study,these issues are addressed using a heterostruc⁃ture strategy via a one-step selenization method to form Mo_(2)C@MoSe_(2).Synchrotron radiation X-ray spectroscopic and high-resolution transmission electron microscopy(HRTEM)characterizations revealed the heterostructure consisting of in-situ grown MoSe_(2)on Mo_(2)C MXene.Electrochemical tests proved the heterojunction electrode’s superior rate perfor⁃mance of 289.06 mAh·g^(-1)at a high current density of 5 A·g^(-1)and long cycling stability of 550 mAh·g^(-1)after 900 cycles at 1 A·g^(-1).This work highlights the useful X-ray spectroscopic analysis to directly elucidate the heterojunction structure,providing an effective reference method for probing heterostructures.展开更多
This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee...This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
Hefei Light Source(HLS)is a synchrotron radiation light source that primarily produces vacuum ultraviolet and soft X-rays.It currently consists of ten experimental stations,including a soft X-ray microscopy station.As...Hefei Light Source(HLS)is a synchrotron radiation light source that primarily produces vacuum ultraviolet and soft X-rays.It currently consists of ten experimental stations,including a soft X-ray microscopy station.As part of its on-going efforts to establish a centralized scientific data management platform,HLS is in the process of developing a test sys-tem that covers the entire lifecycle of scientific data,including data generation,acquisition,processing,analysis,and de-struction.However,the instruments used in the soft X-ray microscopy experimental station rely on commercial propriet-ary software for data acquisition and processing.We developed a semi-automatic data acquisition program to facilitate the integration of soft X-ray microscopy stations into a centralized scientific data management platform.Additionally,we cre-ated an online data processing platform to assist users in analyzing their scientific data.The system we developed and de-ployed meets the design requirements,successfully integrating the soft X-ray microscopy station into the full lifecycle management of scientific data.展开更多
We present an ultra compact and high resolution free space optical spectrometer and demonstrate it by using FDTD simulations. The miniature interferometer-based spectrometer is a series of submicron phase objects on a...We present an ultra compact and high resolution free space optical spectrometer and demonstrate it by using FDTD simulations. The miniature interferometer-based spectrometer is a series of submicron phase objects on a polymethyl methacrylate(PMMA) film with a CCD as the detector. The spectrum is obtained by solving a system of simultaneous linear equations. The Tikhonov regularization method is used to achieve a resolution at the picometer level. Compared with conventional spectrometers, the proposed device is low-cost and easy to fabricate due to its simple structure. Furthermore, its compact feature renders the device ideal for miniaturization and integration as the systems in microfluidics architectures and lab-on-chip designs.展开更多
基金Supported by the Central Government Guidance on Local Science and Technology Development Funds(2023ZY1023)the Six Talent Peaks Project in Jiangsu Province(KTHY-052).
文摘A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.
文摘[目的/意义]苹果“冰糖心”又称水心病,是一种常见的果实病害,严重的水心病果会随着储藏时间的增加发生霉变,造成食品安全隐患。为实现不同等级水心病苹果快速无损检测,本研究旨在构建有效的分级与可溶性固形物(Soluble Solids Content,SSC)预测模型。[方法]本研究选取了230个富士苹果,其中正常、轻度、中度、重度水心苹果数量分别为113、61、47和9个,分别采集了400~1000 nm范围的反射光谱和X射线计算机断层成像(X-ray Computed Tomography,X-ray CT)数据,并测定了SSC含量。[结果和讨论]SSC随水心程度加剧呈上升趋势,重度水心苹果呈现更高的光谱反射率,X-ray CT扫描成像观察到水心区域的组织体积平均密度高于健康组织,基于三维重建算法实现不同等级水心苹果内部水心组织可视化分布。基于偏最小二乘判别分析(Partial Least Squares Discriminant Analysis,PLSDA)构建的不同水心程度苹果果实分级模型建模集和测试集准确率分别为98.7%和95.9%;构建不同水心程度苹果果实SSC回归模型,校正集决定系数(Correlation Coefficient of Calibration,R_(C)^(2))为0.962,均方根误差(Root Mean Squares Error of Calibration,RMSEC)为0.264,测试集决定系数(Correlation Coefficient of Prediction,R_(P)^(2))为0.879,均方根误差(Root Mean Squares Error of Prediction,RMSEP)为0.435。[结论]该研究构建的不同水心程度苹果果实分级模型能够实现苹果不同等级水心病的预测,构建的不同水心程度苹果果实SSC回归模型能够较好地预测苹果果实的SSC,为苹果水心病无损检测和品质评估提供了有效方法。
文摘A new interferometer for extreme ultraviolet (EUV) radiation with a laser produced plasma (LPP) laboratory source is under construction. The LPP source is operated with a Sn solid rod target on which pulsed YAG laser is focused to produce high temperature plasma emitting EUV radiation. The source is equipped with a newly designed debris stopper protecting a condenser multilayer mirror from the particle debris of the target. The condenser mirror focuses the light onto an EUV beam-splitter to form transmitted and reflected paths for producing interference fringes of a sharing type. The optical configuration is of a common path based on a triangular path type with a focusing at the beam-splitter, which is enabled to produce fringes by a low coherence radiation with a standard optical quality beam-splitter. The fringes are recorded by an imaging plate with pixels as small as 25μm. The dynamic range of linearity in detection of the EUV light was found to be more than 10 4 with sensitivity of 10 4 photons/pixel, enough for the purpose of interferogram recording, possibly with one laser shot.
文摘The method and experimental results of measuring a small vibrating displacement by laser interferometer are introduced in this paper. The dynamic response of a new kind of tiny piezoelectric driver is detected. Results show that this kind of PZN-PZT tiny driver not only has high voltage-displacement sensitivity, but also its frequency response approaches to 1 kHz.Therefore this kind of piezoelectric driver can be used widely in many fields.
基金National Key Research and Development Program of China(2020YFA0405800)National Natural Science Foundation of China(12322515,U23A20121,12225508)+2 种基金Youth Innovation Promotion Association of CAS(2022457)National Postdoctoral Program for Innovative Talents(BX20230346)China Postdoctoral Science Foundation(2023M743365)。
文摘Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific ca⁃pacity of MXene materials limit their further utilization.In this study,these issues are addressed using a heterostruc⁃ture strategy via a one-step selenization method to form Mo_(2)C@MoSe_(2).Synchrotron radiation X-ray spectroscopic and high-resolution transmission electron microscopy(HRTEM)characterizations revealed the heterostructure consisting of in-situ grown MoSe_(2)on Mo_(2)C MXene.Electrochemical tests proved the heterojunction electrode’s superior rate perfor⁃mance of 289.06 mAh·g^(-1)at a high current density of 5 A·g^(-1)and long cycling stability of 550 mAh·g^(-1)after 900 cycles at 1 A·g^(-1).This work highlights the useful X-ray spectroscopic analysis to directly elucidate the heterojunction structure,providing an effective reference method for probing heterostructures.
基金CAS Photon Science Research Center for Carbon DioxideCAS President’s International Fellowship Initiative(2024PVA0097)+1 种基金National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800)National Natural Science Foundation of China(U1932201,U1732121)。
文摘This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.
基金supported by the Fundamental Research Funds for the Central Universities(WK2310000102)。
文摘Hefei Light Source(HLS)is a synchrotron radiation light source that primarily produces vacuum ultraviolet and soft X-rays.It currently consists of ten experimental stations,including a soft X-ray microscopy station.As part of its on-going efforts to establish a centralized scientific data management platform,HLS is in the process of developing a test sys-tem that covers the entire lifecycle of scientific data,including data generation,acquisition,processing,analysis,and de-struction.However,the instruments used in the soft X-ray microscopy experimental station rely on commercial propriet-ary software for data acquisition and processing.We developed a semi-automatic data acquisition program to facilitate the integration of soft X-ray microscopy stations into a centralized scientific data management platform.Additionally,we cre-ated an online data processing platform to assist users in analyzing their scientific data.The system we developed and de-ployed meets the design requirements,successfully integrating the soft X-ray microscopy station into the full lifecycle management of scientific data.
基金supported by the Hong Kong Research Grants Council under CERG project 411907 and 412208Nation-al Basic Research Program of China(973)(No.2009CB930600)
文摘We present an ultra compact and high resolution free space optical spectrometer and demonstrate it by using FDTD simulations. The miniature interferometer-based spectrometer is a series of submicron phase objects on a polymethyl methacrylate(PMMA) film with a CCD as the detector. The spectrum is obtained by solving a system of simultaneous linear equations. The Tikhonov regularization method is used to achieve a resolution at the picometer level. Compared with conventional spectrometers, the proposed device is low-cost and easy to fabricate due to its simple structure. Furthermore, its compact feature renders the device ideal for miniaturization and integration as the systems in microfluidics architectures and lab-on-chip designs.