Industrial grade multi-walled carbon nanotubes(IG-MWCNTs) are a low-cost substitute for commercially purified multi-walled carbon nanotubes(P-MWCNTs). In this work, IG-MWCNTs were functionalized with tetraethylenepent...Industrial grade multi-walled carbon nanotubes(IG-MWCNTs) are a low-cost substitute for commercially purified multi-walled carbon nanotubes(P-MWCNTs). In this work, IG-MWCNTs were functionalized with tetraethylenepentamine(TEPA) for CO2capture. The TEPA impregnated IG-MWCNTs were characterized with various experimental methods including N2adsorption/desorption isotherms, elemental analysis, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. Both the adsorption isotherms of IGMWCNTs-n and the isosteric heats of different adsorption capacities were obtained from experiments. TEPA impregnated IG-MWCNTs were also shown to have high CO2adsorption capacity comparable to that of TEPA impregnated P-MWCNTs. The adsorption capacity of IG-MWCNTs based adsorbents was in the range of 2.145 to 3.088 mmol/g, depending on adsorption temperatures. Having the advantages of low-cost and high adsorption capacity, TEPA impregnated IG-MWCNTs seem to be a promising adsorbent for CO2capture from flue gas.展开更多
基金supported by Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ12E08002)
文摘Industrial grade multi-walled carbon nanotubes(IG-MWCNTs) are a low-cost substitute for commercially purified multi-walled carbon nanotubes(P-MWCNTs). In this work, IG-MWCNTs were functionalized with tetraethylenepentamine(TEPA) for CO2capture. The TEPA impregnated IG-MWCNTs were characterized with various experimental methods including N2adsorption/desorption isotherms, elemental analysis, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. Both the adsorption isotherms of IGMWCNTs-n and the isosteric heats of different adsorption capacities were obtained from experiments. TEPA impregnated IG-MWCNTs were also shown to have high CO2adsorption capacity comparable to that of TEPA impregnated P-MWCNTs. The adsorption capacity of IG-MWCNTs based adsorbents was in the range of 2.145 to 3.088 mmol/g, depending on adsorption temperatures. Having the advantages of low-cost and high adsorption capacity, TEPA impregnated IG-MWCNTs seem to be a promising adsorbent for CO2capture from flue gas.
基金supported by the National Natural Science Foundation of China(no.21206202)Scientific and Technological Research Program of Chongqing Municipal Education Commission(no.KJ1600902)+2 种基金the Demonstration project of Chongqing"121"Scientific&Technological Support Project(CSTC2014zktjccx BX0089)Project of Key generic industry technologies of Chongqing(No.cstc2016zdcy-ztzx0020-02)Program for Innovative Research Team in Chongqing University of Technology(2015TD22)
基金sponsored by the National Basic Research Program of China(973 Program)under grant no.2015CB351905the National Natural Science Foundation of China(no.61504019)+3 种基金China Postdoctoral Science Foundation(no.2015M580783)Scientific Research Start-up Foundation of University of Electronic Science and Technology of China(Y02002010301082)the Technology Innovative Research Team of Sichuan Province of China(no.2015TD0005)the Fundamental Research Funds for the Central Universities of China(no.ZYGX2015J140)
基金supported by the Cultivation Project of Major Achievements Transformation of Sichuan Provincial Education Department(#14CZ0005)supported by the Natural Science Foundation of China(#21406184)
基金supported by Unité de Catalyse et Chimie du Solide (UCCS)sponsor of scholarship: China scholarship council and School of Environment, Tsinghua University