The lower Ordovician mid-assemblage Formations in the central Ordos Basin of China host prolific gas resources,and most hydrocarbon reserves are stored in naturally-fractured reservoirs.Thus,fracture pathway systems m...The lower Ordovician mid-assemblage Formations in the central Ordos Basin of China host prolific gas resources,and most hydrocarbon reserves are stored in naturally-fractured reservoirs.Thus,fracture pathway systems may have a significant impact on reservoir performance.This article focuses on the core-and laboratory-based characterization of fractures.Through the developmental degrees,extended scale,output state and filling characteristics of various types of fractures,the results show that there are three distinct fracture types:1)nearly vertical fractures,2)oblique fractures,and 3)horizontal fractures.Based on a systematic study of the characterization of reservoir space,the main geologic setting of natural gas accumulation and the regional tectonic background,type 1 is mainly driven by the tectonic formation mechanism,and type 3 and parts of low-angle fractures in type 2 are induced by the diagenetic formation mechanism.While recovered paleopressure for methane-rich aqueous inclusions trapped in fracture-filling cement indicates that the fracture opening and growth are consistent with gas maturation and charge and such high-angle fractures in type 2 are caused by the compound formation mechanism.The fractures to hydrocarbon accumulation may play a more significant role in improving the quality of reservoir porosity.Furthermore,connected fractures,dissolved pores and cavities together constitute the three-dimensional pore-cave-fracture network pathway systems,with faults serving as the dominant charge pathways of highly pressurized gas in the study area.Our results demonstrate that protracted growth of a pervasive fracture system is not only the consequence of various formation mechanisms but also intrinsic to quasi-continuous accumulation reservoirs.展开更多
Based on analysisof karst fracture-vuggy filling mineralogy and geochemical fluorite in hercynian, this paper make further research about formation and significance of fluorite in central uplift of Tarim Basin. It is ...Based on analysisof karst fracture-vuggy filling mineralogy and geochemical fluorite in hercynian, this paper make further research about formation and significance of fluorite in central uplift of Tarim Basin. It is point out that the development of hercynian fracture-vuggy and filling succession of fracture-cave mineral was under the background of the mingling of low-temperature magma hydrotherm and the brine of upper strata. There are overlap or associate relations between generate of fluorite and buried dissolution or oil-gas migration. It was volume decreased 26.4% after calcite metasomatic by fluorite, this reaction made fluorite engender plentiful intergranular space. It’s created appreciable reservoir space. At same time, hydrotherm carried by fluorite generating could erode adjacent rock though fracture or fissure, forming irregular fracture-cave system, and also accompanied with hydrocarbon migration. The time of hydrocarbon migration and accumulation happened in late hercynian-indosinian is inosculates with the sedimentation time such as fluorite and several hydrothermal mineral.展开更多
基金Project (2011ZX05007-004) supported by the National Sciences and Technologies,ChinaProject (41502132) supported by the National Natural Science Foundation of China
文摘The lower Ordovician mid-assemblage Formations in the central Ordos Basin of China host prolific gas resources,and most hydrocarbon reserves are stored in naturally-fractured reservoirs.Thus,fracture pathway systems may have a significant impact on reservoir performance.This article focuses on the core-and laboratory-based characterization of fractures.Through the developmental degrees,extended scale,output state and filling characteristics of various types of fractures,the results show that there are three distinct fracture types:1)nearly vertical fractures,2)oblique fractures,and 3)horizontal fractures.Based on a systematic study of the characterization of reservoir space,the main geologic setting of natural gas accumulation and the regional tectonic background,type 1 is mainly driven by the tectonic formation mechanism,and type 3 and parts of low-angle fractures in type 2 are induced by the diagenetic formation mechanism.While recovered paleopressure for methane-rich aqueous inclusions trapped in fracture-filling cement indicates that the fracture opening and growth are consistent with gas maturation and charge and such high-angle fractures in type 2 are caused by the compound formation mechanism.The fractures to hydrocarbon accumulation may play a more significant role in improving the quality of reservoir porosity.Furthermore,connected fractures,dissolved pores and cavities together constitute the three-dimensional pore-cave-fracture network pathway systems,with faults serving as the dominant charge pathways of highly pressurized gas in the study area.Our results demonstrate that protracted growth of a pervasive fracture system is not only the consequence of various formation mechanisms but also intrinsic to quasi-continuous accumulation reservoirs.
文摘Based on analysisof karst fracture-vuggy filling mineralogy and geochemical fluorite in hercynian, this paper make further research about formation and significance of fluorite in central uplift of Tarim Basin. It is point out that the development of hercynian fracture-vuggy and filling succession of fracture-cave mineral was under the background of the mingling of low-temperature magma hydrotherm and the brine of upper strata. There are overlap or associate relations between generate of fluorite and buried dissolution or oil-gas migration. It was volume decreased 26.4% after calcite metasomatic by fluorite, this reaction made fluorite engender plentiful intergranular space. It’s created appreciable reservoir space. At same time, hydrotherm carried by fluorite generating could erode adjacent rock though fracture or fissure, forming irregular fracture-cave system, and also accompanied with hydrocarbon migration. The time of hydrocarbon migration and accumulation happened in late hercynian-indosinian is inosculates with the sedimentation time such as fluorite and several hydrothermal mineral.