Among the synthesis techniques for graphene,chemical vapor deposition(CVD)enables the direct growth of graphene films on insulating substrates.Its advantages include uniform coverage,high quality,scalability,and compa...Among the synthesis techniques for graphene,chemical vapor deposition(CVD)enables the direct growth of graphene films on insulating substrates.Its advantages include uniform coverage,high quality,scalability,and compatibility with industrial processes.Graphene is chemically inert and has a zero-bandgap which poses a problem for its use as a functional layer,and nitrogen doping has become an important way to overcome this.Post-plasma treatment has been explored for the synthesis of nitrogen-doped graphene,but the procedures are intricate and not suitable for large-scale production.We report the direct synthesis of nitrogen-doped graphene on a 4-inch sapphire wafer by ethanol-assisted CVD employing pyridine as the carbon feedstock,where the nitrogen comes from the pyridine and the hydroxyl group in ethanol improves the quality of the graphene produced.Additionally,the types of nitrogen dopant produced and their effects on III-nitride epitaxy were also investigated,resulting in the successful illumination of LED devices.This work presents an effective synthesis strategy for the preparation of nitrogen-doped graphene,and provides a foundation for designing graphene functional layers in optoelectronic devices.展开更多
Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various f...Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°.展开更多
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe...Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.展开更多
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta...Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach.展开更多
In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition...In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition(LDED).The effects of ultrasonic vibration(UV)and tempering treatment on microstructure evolution,microhardness distribution and mechanical properties of deposition layer were studied in detail.The microstructure of UV assisted LDED sample after tempering is mainly composed of tempered sorbite(TS).Due to the improvement of microstructure inhomogeneity and grains refinement,UV assisted LDED sample with tempering treatment obtains excellent mechanical properties.The ultimate tensile strength(UTS),yield strength(YS)and elongation after breaking(EL)reach 765 MPa,657 MPa and 19.5%,the increase ratios of UTS and YS are 14.5%and 33.8%while maintaining plasticity compared to original LDED sample,respectively.It is obvious that ultrasonic vibration combined with tempering is a potential and effective method to obtain uniform microstructure and excellent mechanical properties in metal laser directed energy deposition field.展开更多
Polyvinylidene fluoride/lead zirconate titanate(PVDF/PZT)composite films have been prepared by direct ink writing and the effect of PZT content on crystallization behavior and electrical properties of film were system...Polyvinylidene fluoride/lead zirconate titanate(PVDF/PZT)composite films have been prepared by direct ink writing and the effect of PZT content on crystallization behavior and electrical properties of film were systematically investigated.The composite films were characterized by scanning electron microscope(SEM),X-ray diffractometer(XRD),Flourier transform infrared spectroscope(FTIR)and differential scanning calorimeter(DSC).The results show that,surface modified PZT powder(PZT@PDA)is successfully coated by polydopamine(PDA),resulting in a large number of polar groups that interact with the-CF_(2)-groups in PVDF,inducing the generation of polarβphase due to hydrogen bonding formed in the interaction.Theβphase content in composite film increases with increasing PZT@PDA content,up to 28.09%as with 5 wt.%PZT@PDA.PZT@PDA plays a role of nucleating agent to promote the generation of polar phases in the film and also acts as an impurity hindering the growth of nuclei to reduce crystallinity.Moreover,the presence of PZT@PDA in interfaces provides more sites for the occurrence of interfacial polarization and thus improving the electrical properties of films.The composite film with 5 wt.%PZT@PDA possesses the highest dielectric constant(8.61)and residual polarization value(0.6803μC/cm^(2)).展开更多
基金National Natural Science Foundation of China(T2188101)。
文摘Among the synthesis techniques for graphene,chemical vapor deposition(CVD)enables the direct growth of graphene films on insulating substrates.Its advantages include uniform coverage,high quality,scalability,and compatibility with industrial processes.Graphene is chemically inert and has a zero-bandgap which poses a problem for its use as a functional layer,and nitrogen doping has become an important way to overcome this.Post-plasma treatment has been explored for the synthesis of nitrogen-doped graphene,but the procedures are intricate and not suitable for large-scale production.We report the direct synthesis of nitrogen-doped graphene on a 4-inch sapphire wafer by ethanol-assisted CVD employing pyridine as the carbon feedstock,where the nitrogen comes from the pyridine and the hydroxyl group in ethanol improves the quality of the graphene produced.Additionally,the types of nitrogen dopant produced and their effects on III-nitride epitaxy were also investigated,resulting in the successful illumination of LED devices.This work presents an effective synthesis strategy for the preparation of nitrogen-doped graphene,and provides a foundation for designing graphene functional layers in optoelectronic devices.
文摘Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°.
基金Supported by the Key Laboratory Fund for Equipment Pre-Research(6142207210202)。
文摘Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.
基金National Natural Science Foundation of China(62373102)Jiangsu Natural Science Foundation(BK20221455)Anhui Provincial Key Research and Development Project(2022i01020013)。
文摘Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach.
基金Project(2021YFC2801904) supported by the National Key R&D Program of ChinaProject(KY10100230067) supported by the Basic Product Innovation Research Project,China+3 种基金Projects(52271130,52305344) supported by the National Natural Science Foundation of ChinaProject(ZR2022QE073) supported by the Natural Science Foundation of Shandong Province,ChinaProject(AMGM2021F01) supported by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai,ChinaProject(KY90200210015) supported by Leading Scientific Research Project of CNNC,China。
文摘In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition(LDED).The effects of ultrasonic vibration(UV)and tempering treatment on microstructure evolution,microhardness distribution and mechanical properties of deposition layer were studied in detail.The microstructure of UV assisted LDED sample after tempering is mainly composed of tempered sorbite(TS).Due to the improvement of microstructure inhomogeneity and grains refinement,UV assisted LDED sample with tempering treatment obtains excellent mechanical properties.The ultimate tensile strength(UTS),yield strength(YS)and elongation after breaking(EL)reach 765 MPa,657 MPa and 19.5%,the increase ratios of UTS and YS are 14.5%and 33.8%while maintaining plasticity compared to original LDED sample,respectively.It is obvious that ultrasonic vibration combined with tempering is a potential and effective method to obtain uniform microstructure and excellent mechanical properties in metal laser directed energy deposition field.
基金Project(22020JJ4729)supported by the Natural Science Foundation of Hunan Province,China。
文摘Polyvinylidene fluoride/lead zirconate titanate(PVDF/PZT)composite films have been prepared by direct ink writing and the effect of PZT content on crystallization behavior and electrical properties of film were systematically investigated.The composite films were characterized by scanning electron microscope(SEM),X-ray diffractometer(XRD),Flourier transform infrared spectroscope(FTIR)and differential scanning calorimeter(DSC).The results show that,surface modified PZT powder(PZT@PDA)is successfully coated by polydopamine(PDA),resulting in a large number of polar groups that interact with the-CF_(2)-groups in PVDF,inducing the generation of polarβphase due to hydrogen bonding formed in the interaction.Theβphase content in composite film increases with increasing PZT@PDA content,up to 28.09%as with 5 wt.%PZT@PDA.PZT@PDA plays a role of nucleating agent to promote the generation of polar phases in the film and also acts as an impurity hindering the growth of nuclei to reduce crystallinity.Moreover,the presence of PZT@PDA in interfaces provides more sites for the occurrence of interfacial polarization and thus improving the electrical properties of films.The composite film with 5 wt.%PZT@PDA possesses the highest dielectric constant(8.61)and residual polarization value(0.6803μC/cm^(2)).