期刊文献+
共找到1,167篇文章
< 1 2 59 >
每页显示 20 50 100
Blind source separation by weighted K-means clustering 被引量:5
1
作者 Yi Qingming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期882-887,共6页
Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not ... Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments. 展开更多
关键词 blind source separation underdetermined mixing sparse representation weighted k-means clustering.
在线阅读 下载PDF
基于k-means聚类熵权评价的飞行器质心调整优化方法
2
作者 田小川 郁立勇 +2 位作者 白斌 陈思 何文凯 《导弹与航天运载技术(中英文)》 北大核心 2025年第1期37-41,共5页
针对飞行器质心调整流程复杂、耗时长的问题,运用k-means聚类方法,对飞行器配重历史数据进行聚类,基于样本聚类结果,计算出不同样本下飞行器标准配重,再通过模拟装配计算增加标准配重后的飞行器质心偏移,并得出一系列统计数据,最后采用... 针对飞行器质心调整流程复杂、耗时长的问题,运用k-means聚类方法,对飞行器配重历史数据进行聚类,基于样本聚类结果,计算出不同样本下飞行器标准配重,再通过模拟装配计算增加标准配重后的飞行器质心偏移,并得出一系列统计数据,最后采用基于熵权的综合评价方法对比质心调整效果,选出最优的飞行器标准配重,进而简化飞行器质心调整流程,大幅提升飞行器生产效率。 展开更多
关键词 k-means 熵权评价模型 飞行器质心调整 聚类
在线阅读 下载PDF
多目标规划与K-means聚类的多波束测深测线设计
3
作者 黄丽均 朴宇豪 +1 位作者 王祎阳 李国东 《海洋测绘》 北大核心 2025年第1期16-20,共5页
为解决多波束测深在海底地形复杂情况下的多波束测线布设问题,提高测深效率,首先基于K-means聚类将海底区域划分为若干理想斜坡,接着基于多目标规划以测线长度最短和覆盖率最大为目标函数,并考虑条带重叠率以及两端测线覆盖边缘区域等... 为解决多波束测深在海底地形复杂情况下的多波束测线布设问题,提高测深效率,首先基于K-means聚类将海底区域划分为若干理想斜坡,接着基于多目标规划以测线长度最短和覆盖率最大为目标函数,并考虑条带重叠率以及两端测线覆盖边缘区域等限制条件,利用组合权重法建立多目标规划的测线布设模型。对假设矩形待测海域进行仿真计算,结果表明分区域规划后按照此测线布设模型得到的测线布设方案,测线的总长度达到最短,重叠率为18.42%,覆盖待测海域的面积比达到98.91%。本文提出的多波束测线设计方法可为提高多波束测深的效率提供理论依据。 展开更多
关键词 多波束测深 测线设计 多目标规划 仿真分析 k-means三维聚类 组合权重
在线阅读 下载PDF
A K-means clustering based blind multiband spectrum sensing algorithm for cognitive radio 被引量:3
4
作者 LEI Ke-jun TAN Yang-hong +1 位作者 YANG Xi WANG Han-rui 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第10期2451-2461,共11页
In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorith... In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method. 展开更多
关键词 cognitive radio(CR) blind multiband spectrum sensing(BMSS) k-means clustering(KMC) occupied subband set(OSS) idle subband set(ISS) information theoretic criteria(ITC) noise uncertainty
在线阅读 下载PDF
Construction mechanism of whitenization weight function and its application in grey clustering evaluation 被引量:7
5
作者 XIE Naiming SU Bentao CHEN Nanlei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期121-131,共11页
The clustering evaluation can be used to scientifically classify the objects to be evaluated according to the information aggregation of various evaluation rules. In grey weighted clustering evaluation, the index clus... The clustering evaluation can be used to scientifically classify the objects to be evaluated according to the information aggregation of various evaluation rules. In grey weighted clustering evaluation, the index clustering rule relies on the construction of the whitenization weight function, while the existing construction method of the linear function lacks the construction mechanism analysis and validity explanation. A normative construction principle is put forward by analyzing the construction mechanism of the function. Through proving the normative principle of the function,the basic modal function(BMF) is proposed and characterized by different function forms. Then, a new type of the whitenization weight function and its grey clustering evaluation model algorithm are given by studying the mechanism and nature of the construction of different forms of the function. Finally, the comparative study for self-innovation capability of defense science and technology industry(DSTI) is taken as an example. The results show that the different construction ways of the function have an effect on the clustering result. The proposed construction mechanism can better explain the index clustering rules and evaluation effectiveness,which will perfect the theoretical system of grey clustering evaluation and be applied to practice effectively. 展开更多
关键词 whitenization weight FUNCTION GREY system THEORY GREY clustering evaluation.
在线阅读 下载PDF
基于邻域互信息与K-means特征聚类的特征选择 被引量:3
6
作者 孙林 梁娜 徐久成 《智能系统学报》 CSCD 北大核心 2024年第4期983-996,共14页
针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为... 针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为自适应邻域半径,确定样本的邻域集,并由此构建自适应邻域熵、邻域互信息、归一化邻域互信息等度量,反映特征之间的相关性;然后,基于归一化邻域互信息构建自适应K近邻集合,利用Pearson相关系数表示特征的权重定义加权K近邻密度,实现自动选取K-means算法的簇中心,进而完成K-means特征聚类;最后,给出加权平均冗余度,选出每个特征簇中加权平均冗余度最大的特征构成最优特征子集。实验结果表明所提算法不仅可以有效提升特征选择的分类结果而且可以获得更好的聚类效果。 展开更多
关键词 特征选择 邻域互信息 k-means 特征聚类 自适应K近邻 特征权重 加权K近邻密度
在线阅读 下载PDF
基于K-means聚类及模糊判别的卷烟包灰性能综合评价方法 被引量:1
7
作者 楚文娟 郭丽霞 +5 位作者 程东旭 王红霞 崔廷 冯银龙 王建民 鲁平 《轻工学报》 CAS 北大核心 2024年第6期93-100,共8页
为实现卷烟包灰性能的综合评价和评价结果具象化,以49个卷烟的灰色、裂口率、缩灰率、碳线宽度、碳线整齐度测定结果为原始变量,先运用K-means聚类、模糊判别法将原始变量转换为具象化的得分数据,再运用Critic赋权法赋予各项指标权重,... 为实现卷烟包灰性能的综合评价和评价结果具象化,以49个卷烟的灰色、裂口率、缩灰率、碳线宽度、碳线整齐度测定结果为原始变量,先运用K-means聚类、模糊判别法将原始变量转换为具象化的得分数据,再运用Critic赋权法赋予各项指标权重,建立了一种卷烟包灰性能综合评价方法。结果表明:将原始变量转换成区间为60~100、平均值在80左右的得分,可使评价结果具象化且更加符合认知习惯;5项指标的权重由高到低依次为裂口率(0.27)>缩灰率(0.25)>灰色(0.18)>碳线整齐度(0.16)>碳线宽度(0.14);卷烟包灰性能可划分为优、良、差三档,各档得分区间依次为(85,100]、[75,85]、[60,75);不同档次代表性卷烟的灰柱视觉效果对比结果证明,综合得分可客观反映卷烟包灰性能的优劣。 展开更多
关键词 卷烟 包灰性能 k-means聚类 模糊判别 Critic赋权法
在线阅读 下载PDF
一种集成簇内和簇间距离的加权k-means聚类方法 被引量:45
8
作者 黄晓辉 王成 +1 位作者 熊李艳 曾辉 《计算机学报》 EI CSCD 北大核心 2019年第12期2836-2848,共13页
聚类分析是数据挖掘与分析最重要的方法之一.它把相似的数据对象归类到一个簇,把不同的数据对象尽可能分到不同的簇.其中k-means聚类算法,由于其简单性和高效性,被广泛运用于解决各种现实问题,例如文本演化分析、图像聚类、社区发现等.... 聚类分析是数据挖掘与分析最重要的方法之一.它把相似的数据对象归类到一个簇,把不同的数据对象尽可能分到不同的簇.其中k-means聚类算法,由于其简单性和高效性,被广泛运用于解决各种现实问题,例如文本演化分析、图像聚类、社区发现等.然而在聚类过程中,大部分现有的类k-means算法主要考虑簇内距离,而忽略了簇间距离的作用.本文结合特征加权方法,提出了一种新的集成簇内和簇间距离的加权k-means方法(a weighting k-means clustering approach by integrating Intra-Cluster and Inter-Cluster distances,KICIC)来解决高维数据聚类问题.虽然现有少数类k-means算法通过最大化簇中心与全局中心距离来融入簇间信息,但不同于这类方法,KICIC通过在子空间内最大化簇中心与其他簇数据对象的距离来融合簇内和簇间距离进行聚类.基于此思路,本文首先为KICIC算法设计了一个目标函数,然后通过优化求解目标函数得到算法参数的更新迭代公式,并在此基础上设计了KICIC算法.最后,在6个真实数据集上的实验结果表明,对比现有类k-means算法,KICIC算法在大部分情况下都有获得更好的聚类结果. 展开更多
关键词 k-means 聚类分析 特征加权 熵调整 数据挖掘
在线阅读 下载PDF
基于人工鱼群的优化K-means聚类算法 被引量:23
9
作者 于海涛 贾美娟 +1 位作者 王慧强 邵国强 《计算机科学》 CSCD 北大核心 2012年第12期60-64,共5页
针对K-means算法全局搜索能力不足,提出基于人工鱼群的优化K-means聚类算法(AFS-KM),该算法克服了K-means聚类算法对初始聚类中心选择的敏感问题,能够获得全局最优的聚类划分。在聚类过程中,采用一种基于信息增益的属性加权的实体之间... 针对K-means算法全局搜索能力不足,提出基于人工鱼群的优化K-means聚类算法(AFS-KM),该算法克服了K-means聚类算法对初始聚类中心选择的敏感问题,能够获得全局最优的聚类划分。在聚类过程中,采用一种基于信息增益的属性加权的实体之间距离计算方法进行聚类划分时,对于球形数据和椭球形数据都能够获得理想的聚类划分结果。对KDD-99数据集的仿真实验结果表明,该算法在网络入侵检测时获得了理想的检测率和误报率。 展开更多
关键词 聚类 人工鱼群 信息增益 属性加权 入侵检测
在线阅读 下载PDF
基于信息熵的精确属性赋权K-means聚类算法 被引量:38
10
作者 原福永 张晓彩 罗思标 《计算机应用》 CSCD 北大核心 2011年第6期1675-1677,共3页
为了进一步提高聚类的精确度,针对传统K-means算法的初始聚类中心产生方式和数据相似性判断依据,提出一种基于信息熵的精确属性赋权K-means聚类算法。首先利用熵值法对数据对象的属性赋权来修正对象间的欧氏距离,然后通过比较初聚类的... 为了进一步提高聚类的精确度,针对传统K-means算法的初始聚类中心产生方式和数据相似性判断依据,提出一种基于信息熵的精确属性赋权K-means聚类算法。首先利用熵值法对数据对象的属性赋权来修正对象间的欧氏距离,然后通过比较初聚类的赋权类别目标价值函数,选择高质量的初始聚类中心来进行更高精度和更加稳定的聚类,最后通过Matlab编程实现。实验证明该算法的聚类精确度和稳定性要明显高于传统K-means算法。 展开更多
关键词 k-means 精确度 信息熵 属性赋权 初始聚类中心
在线阅读 下载PDF
基于改进K-means聚类的案例检索策略 被引量:10
11
作者 乔丽 姜慧霖 贾世杰 《计算机工程》 CAS CSCD 北大核心 2011年第5期193-195,共3页
针对目前基于案例推理系统中案例检索存在的问题,根据K-means算法思想,分别设计一个案例聚类算法及案例检索算法。根据K-means算法的不足,对初值选取规则及案例检索算法进行改进。分析基于案例权重的样本案例选取规则,并论述案例聚类算... 针对目前基于案例推理系统中案例检索存在的问题,根据K-means算法思想,分别设计一个案例聚类算法及案例检索算法。根据K-means算法的不足,对初值选取规则及案例检索算法进行改进。分析基于案例权重的样本案例选取规则,并论述案例聚类算法和检索算法。实验结果表明,该方法能有效提高案例检索效率及案例检索结果的召回率。 展开更多
关键词 基于案例推理 聚类 案例权重 相似度
在线阅读 下载PDF
基于初始聚类中心优化和维间加权的改进K-means算法 被引量:7
12
作者 王越 王泉 +1 位作者 吕奇峰 曾晶 《重庆理工大学学报(自然科学)》 CAS 2013年第4期77-80,共4页
针对K-means算法易受随机选择的初始聚类中心的影响和划分准确率不高的缺点,给出了一种改进的K-means算法。首先对初始聚类中心的选择过程进行了改进,然后对各样本点间差异最大的维进行加权处理。在Iris数据集上对原始算法和改进后的K-m... 针对K-means算法易受随机选择的初始聚类中心的影响和划分准确率不高的缺点,给出了一种改进的K-means算法。首先对初始聚类中心的选择过程进行了改进,然后对各样本点间差异最大的维进行加权处理。在Iris数据集上对原始算法和改进后的K-means算法的聚类结果进行对比分析。实验证明:改进后的算法稳定,且聚类的准确率达到了92%。 展开更多
关键词 聚类 K—means算法 初始聚类中心 维间加权 Iris数据集
在线阅读 下载PDF
求解大规模谱聚类的近似加权核k-means算法 被引量:31
13
作者 贾洪杰 丁世飞 史忠植 《软件学报》 EI CSCD 北大核心 2015年第11期2836-2846,共11页
谱聚类将聚类问题转化成图划分问题,是一种基于代数图论的聚类方法.在求解图划分目标函数时,一般利用Rayleigh熵的性质,通过计算Laplacian矩阵的特征向量将原始数据点映射到一个低维的特征空间中,再进行聚类.然而在谱聚类过程中,存储相... 谱聚类将聚类问题转化成图划分问题,是一种基于代数图论的聚类方法.在求解图划分目标函数时,一般利用Rayleigh熵的性质,通过计算Laplacian矩阵的特征向量将原始数据点映射到一个低维的特征空间中,再进行聚类.然而在谱聚类过程中,存储相似矩阵的空间复杂度是O(n2),对Laplacian矩阵特征分解的时间复杂度一般为O(n3),这样的复杂度在处理大规模数据时是无法接受的.理论证明,Normalized Cut图聚类与加权核k-means都等价于矩阵迹的最大化问题.因此,可以用加权核k-means算法来优化Normalized Cut的目标函数,这就避免了对Laplacian矩阵特征分解.不过,加权核k-means算法需要计算核矩阵,其空间复杂度依然是O(n2).为了应对这一挑战,提出近似加权核k-means算法,仅使用核矩阵的一部分来求解大数据的谱聚类问题.理论分析和实验对比表明,近似加权核k-means的聚类表现与加权核k-means算法是相似的,但是极大地减小了时间和空间复杂性. 展开更多
关键词 谱聚类 迹最大化 加权核k-means 近似核矩阵 大数据
在线阅读 下载PDF
基于Fisher线性判别率的加权K-means聚类算法 被引量:5
14
作者 杨鹤标 薛艳锋 +2 位作者 冯进兰 沈项军 吴静丽 《计算机应用研究》 CSCD 北大核心 2010年第12期4439-4442,共4页
为提高K-means聚类效果,采用Fisher线性判别率的方法确定特征在聚类中的贡献度并依此对特征进行加权聚类。在人工和实际数据集上所做的实验表明,本方法在聚类效果上优于其他同类加权K-means聚类算法。
关键词 K-均值 聚类 Fisher线性判别率 特征加权 调整随机指标 类内错误率均方和
在线阅读 下载PDF
基于改进的加权中值滤波与K-means聚类的织物缺陷检测 被引量:23
15
作者 张缓缓 马金秀 +1 位作者 景军锋 李鹏飞 《纺织学报》 EI CAS CSCD 北大核心 2019年第12期50-56,共7页
为检测纹理织物在生产过程中产生的各种疵点,提出一种基于改进的加权中值滤波与K-means聚类相结合的纹理织物疵点检测方法。首先利用改进的加权中值滤波对纹理织物图像进行预处理,以减少纹理信息对疵点检测产生的影响,同时通过联合直方... 为检测纹理织物在生产过程中产生的各种疵点,提出一种基于改进的加权中值滤波与K-means聚类相结合的纹理织物疵点检测方法。首先利用改进的加权中值滤波对纹理织物图像进行预处理,以减少纹理信息对疵点检测产生的影响,同时通过联合直方图动态数据分配权重和像素,减少寻求中位数的时间来有效地缩短检测时间,提高了执行速度;然后采用K-means算法对滤波后的织物图像进行聚类,计算织物图像疵点和非疵点的聚类中心,进而实现图像疵点区域的分割。实验结果表明,该方法可有效地检测出方格、点形、星形、平纹、斜纹等多类型纹理织物的疵点,并显著提高检测速度。 展开更多
关键词 织物疵点检测 改进加权中值滤波 联合直方图 k-means聚类
在线阅读 下载PDF
基于半监督K-Means的属性加权聚类算法 被引量:6
16
作者 潘巍 周晓英 +1 位作者 吴立锋 王国辉 《计算机应用与软件》 2017年第3期189-193,242,共6页
K-Means是经典的非监督聚类算法,因其速度快,稳定性高广泛应用在各个领域。但传统的K-Means没有考虑无关属性以及噪声属性的影响,并且不能自动寻找聚类数目K。而目前K-Means的改进算法中,也鲜有关于高维以及噪声方面的改进。因此,结合PC... K-Means是经典的非监督聚类算法,因其速度快,稳定性高广泛应用在各个领域。但传统的K-Means没有考虑无关属性以及噪声属性的影响,并且不能自动寻找聚类数目K。而目前K-Means的改进算法中,也鲜有关于高维以及噪声方面的改进。因此,结合PCA提出基于半监督的K-Means加权属性聚类方法。首先,用PCA得到更少更有效的特征,并计算它们的分类贡献率(即每个特征对聚类的影响因子)。其次,由半监督自适应算法得到K。最后将加权数据集以及K应用到聚类中。实验表明,该算法具有更好的识别率和普适性。 展开更多
关键词 均值 聚类 半监督 主成分分析 属性加权
在线阅读 下载PDF
K-means聚类算法优化方法的研究 被引量:22
17
作者 于海涛 李梓 姚念民 《小型微型计算机系统》 CSCD 北大核心 2012年第10期2273-2277,共5页
针对K-means算法全局搜索能力的不足,提出基于改进PSO的优化K-means聚类算法(IPSO-KM),该算法克服了K-means聚类算法对初始聚类中心选择敏感问题,能够获得全局最优的聚类划分.同时,提出一种基于信息增益比例的属性加权的实体之间距离计... 针对K-means算法全局搜索能力的不足,提出基于改进PSO的优化K-means聚类算法(IPSO-KM),该算法克服了K-means聚类算法对初始聚类中心选择敏感问题,能够获得全局最优的聚类划分.同时,提出一种基于信息增益比例的属性加权的实体之间距离计算方法,使用属性加权距离计算方法进行聚类划分时,无论是球形数据还是椭球形数据都能够获得较好的聚类划分结果.仿真实验采用KDD-cup 99的测试数据,实验结果表明本文提出的算法不但能检测到多种已知的网络入侵行为,而且能够检测到许多未知的网络入侵行为,同时保持较高的网络入侵的检测率和较低入侵的误报率. 展开更多
关键词 聚类 改进粒子群 信息增益比例 属性加权 入侵检测
在线阅读 下载PDF
基于模拟谐振子的优化K-means聚类算法 被引量:4
18
作者 于海涛 王慧强 +1 位作者 李梓 韩立娟 《计算机工程与应用》 CSCD 2012年第30期122-127,共6页
针对K-means算法全局搜索能力的不足,提出了基于模拟谐振子的优化K-means聚类算法(SHO-KM),该算法克服了K-means聚类算法对初始聚类中心选择敏感问题,能够获得全局最优的聚类划分。为了提高聚类划分质量,在聚类过程中采用基于Fisher分... 针对K-means算法全局搜索能力的不足,提出了基于模拟谐振子的优化K-means聚类算法(SHO-KM),该算法克服了K-means聚类算法对初始聚类中心选择敏感问题,能够获得全局最优的聚类划分。为了提高聚类划分质量,在聚类过程中采用基于Fisher分值的属性加权的实体之间距离计算方法,使用属性加权距离计算方法进行聚类划分时,无论是球形数据还是椭球形数据都能够获得较好的聚类划分结果。对KDD-99数据集的仿真实验结果表明,该算法在入侵检测中获得了理想的检测率和误报率。 展开更多
关键词 聚类 模拟谐振子 Fisher分值 属性加权 入侵检测
在线阅读 下载PDF
改进K-Means聚类算法及其在视觉词典构造中的应用 被引量:4
19
作者 王美华 曾燕妮 蔡瑞初 《计算机应用与软件》 CSCD 2015年第10期159-163,167,共6页
K-Means聚类是视觉词典构造的常用方法,其聚类结果直接影响后续的特征量化效果和检索精度,而现有的K-Means聚类算法难以获得高质量的视觉词典。针对这种情况,提出局部化K-Means聚类算法。算法首先根据启发式原则将特征集划分成若干个独... K-Means聚类是视觉词典构造的常用方法,其聚类结果直接影响后续的特征量化效果和检索精度,而现有的K-Means聚类算法难以获得高质量的视觉词典。针对这种情况,提出局部化K-Means聚类算法。算法首先根据启发式原则将特征集划分成若干个独立的子集,并对各子集进行传统K-Means聚类,然后以各子集的聚类中心为对象进行加权K-Means聚类。上述过程不断迭代直至形成特定规模的视觉词典。实验结果表明,与现有算法相比,该算法提高了聚类质量。在SIFT特征集和标准数据集上进行的多组对比实验证明了该算法的有效性。 展开更多
关键词 k-means 聚类 视觉词典 启发式划分 加权
在线阅读 下载PDF
改进K-means聚类算法行驶工况及油耗研究 被引量:5
20
作者 苏小会 张玉西 +1 位作者 徐淑萍 尚煜 《计算机工程与科学》 CSCD 北大核心 2021年第11期2020-2026,共7页
为解决传统聚类算法初始中心易陷入局部最优、耗时长的问题,提出一种改进的K-means聚类优化算法。该算法引入最大最小距离和加权欧氏距离,从剩余聚类点距离均值和出发,避免孤立点和边缘数据的影响。利用比重法对主成分进行改进,以由此... 为解决传统聚类算法初始中心易陷入局部最优、耗时长的问题,提出一种改进的K-means聚类优化算法。该算法引入最大最小距离和加权欧氏距离,从剩余聚类点距离均值和出发,避免孤立点和边缘数据的影响。利用比重法对主成分进行改进,以由此获得的特征影响因子作为初始特征权重,构建一种加权欧氏距离度量。根据特征贡献率对聚类的影响,筛选具有代表性的特征因子凸显聚类效果,最终合成汽车行驶工况,分析瞬时油耗。结果表明,所提算法构建行驶工况的速度-加速度联合分布差异值仅为1.05%,比传统K-means聚类省时44.2%,行驶工况拟合度较高,能反映实际车辆的运行特征及油耗。 展开更多
关键词 行驶工况 影响因子 特征权重 加权k-means聚类
在线阅读 下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部