Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional ...The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform(IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.展开更多
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ...A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.展开更多
Nyquist Folding Receiver(NYFR)is a perceptron structure that realizes a low probability of intercept(LPI)signal analog to information.Aiming at the problem of LPI radar signal receiving,the time domain,frequency domai...Nyquist Folding Receiver(NYFR)is a perceptron structure that realizes a low probability of intercept(LPI)signal analog to information.Aiming at the problem of LPI radar signal receiving,the time domain,frequency domain,and time-frequency domain problems of signals intercepted by NYFR structure are studied.Combined with the time-frequency analysis(TFA)method,a radar recognition scheme based on deep learning(DL)is introduced,which can reliably classify common LPI radar signals.First,the structure of NYFR and its characteristics in the time domain,frequency domain,and time and frequency domain are analyzed.Then,the received signal is then converted into a time-frequency image(TFI).Finally,four kinds of DL algorithms are used to classify LPI radar signals.Simulation results demonstrate the correctness of the NYFR structure,and the effectiveness of the proposed recognition method is verified by comparison experiments.展开更多
In this paper, propagated δ pulses through different distance of plasma are calculated,and their time-frequency characteristics are studied using CWD (Choi-William distribution). It is found that several horizontal s...In this paper, propagated δ pulses through different distance of plasma are calculated,and their time-frequency characteristics are studied using CWD (Choi-William distribution). It is found that several horizontal spectra appear at early arrival time like discrete spectrum, at last time a hyperbolic curve lies in the time-frequency spectrum which corresponds to the frequency-group delay curve of plasma. To understand the time-frequency the property of a signal is helpful for obtaining the plasma parameters.展开更多
This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces ...This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces the long shortterm memory(LSTM) neural network into the recognition algorithm and combines the time-frequency(TF) analysis for signal preprocessing. Five kinds of navigation jamming signals including white Gaussian noise(WGN), pulse jamming, sweep jamming, audio jamming, and spread spectrum jamming are used as input for training and recognition. Since the signal parameters and quantity are unknown in the actual scenario, this work builds a data set containing multiple kinds and parameters jamming to train the TF-LSTM. The performance of this method is evaluated by simulations and experiments. The method has higher recognition accuracy and better robustness than the existing methods, such as LSTM and the convolutional neural network(CNN).展开更多
The roll angular rate is much crucial for the guidance and control of the projectile.Yet the high-speed rotation of the projectile brings severe challenges to the direct measurement of the roll angular rate.Neverthele...The roll angular rate is much crucial for the guidance and control of the projectile.Yet the high-speed rotation of the projectile brings severe challenges to the direct measurement of the roll angular rate.Nevertheless,the radial magnetometer signal is modulated by the high-speed rotation,thus the roll angular rate can be achieved by extracting the instantaneous frequency of the radial magnetometer signal.The objective of this study is to find out a precise instantaneous frequency extraction method to obtain an accurate roll angular rate.To reach this goal,a modified spline-kernelled chirplet transform(MSCT)algorithm is proposed in this paper.Due to the nonlinear frequency modulation characteristics of the radial magnetometer signal,the existing time-frequency analysis methods in literature cannot obtain an excellent energy concentration in the time-frequency plane,thereby leading to a terrible instantaneous frequency extraction accuracy.However,the MSCT can overcome the problem of bad energy concentration by replacing the short-time Fourier transform operator with the Chirp Z-transform operator based on the original spline-kernelled chirplet transform.The introduction of Chirp Z-transform can improve the construction accuracy of the transform kernel.Since the construction accuracy of the transform kernel determines the concentration of time-frequency distribution,the MSCT can obtain a more precise instantaneous frequency.The performance of the MSCT was evaluated by a series of numerical simulations,high-speed turntable experiments,and real flight tests.The evaluation results show that the MSCT has an excellent ability to process the nonlinear frequency modulation signal,and can accurately extract the roll angular rate for the high spinning projectiles.展开更多
Multiple maneuvedng targets signal processing in high frequency radar is challenging due to the following difficulties: the interference between signals is severe because of significant spread of the target Doppler s...Multiple maneuvedng targets signal processing in high frequency radar is challenging due to the following difficulties: the interference between signals is severe because of significant spread of the target Doppler spectrum, the low signal to clutter ratio (SCR) environment degrades the performance of signal process- ing algorithms. This paper addresses this challenging problem by using an S2-method and an adaptive clutter rejection scheme. The proposed S2-method improves the S-method by eliminating inter- ference between signals, and thus it enables multi-target signals to be reconstructed individually. The proposed adaptive clutter rejec- tion scheme is based on an adaptive notch filter, which is designed according to the envelop of the clutter spectrum. Experiments with simulated targets added into radar sea clutter echo and real air target data illustrate the effectiveness of the proposed method.展开更多
To diagnosethe reciprocating mechanical fault.We utilizedlocal waveti me-frequency approach.Firstly,we gave the principle.Secondly,the application of local wave ti me-frequency was given.Finally,we discusseditsvirtue ...To diagnosethe reciprocating mechanical fault.We utilizedlocal waveti me-frequency approach.Firstly,we gave the principle.Secondly,the application of local wave ti me-frequency was given.Finally,we discusseditsvirtue in reciprocating mechanical fault diagnosis.展开更多
Because the existing range-Doppler algorithm in inverse synthetic aperture sonar (ISAS) is based on target model of uniform motion, it may be invalidated for maneuvering targets due to the time-varying changes of both...Because the existing range-Doppler algorithm in inverse synthetic aperture sonar (ISAS) is based on target model of uniform motion, it may be invalidated for maneuvering targets due to the time-varying changes of both individual scatter′s Doppler and imaging projection plane. To resolve the problem, a new range-instantaneous Doppler imaging method is proposed for imaging maneuvering targets based on time-frequency analysis. The proposed approach is verified using real underwater acoustic data.展开更多
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.
基金supported by the National Natural Science Foundation of China (61871146)the Fundamental Research Funds for the Central Universities (FRFCU5710093720)。
文摘The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform(IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.
基金This project was supported by the National Natural Science Foundation of China (60472102)Shanghai Leading Academic Discipline Project (T0103).
文摘A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.
基金supported by the National Defence Pre-research Foundation of China。
文摘Nyquist Folding Receiver(NYFR)is a perceptron structure that realizes a low probability of intercept(LPI)signal analog to information.Aiming at the problem of LPI radar signal receiving,the time domain,frequency domain,and time-frequency domain problems of signals intercepted by NYFR structure are studied.Combined with the time-frequency analysis(TFA)method,a radar recognition scheme based on deep learning(DL)is introduced,which can reliably classify common LPI radar signals.First,the structure of NYFR and its characteristics in the time domain,frequency domain,and time and frequency domain are analyzed.Then,the received signal is then converted into a time-frequency image(TFI).Finally,four kinds of DL algorithms are used to classify LPI radar signals.Simulation results demonstrate the correctness of the NYFR structure,and the effectiveness of the proposed recognition method is verified by comparison experiments.
文摘In this paper, propagated δ pulses through different distance of plasma are calculated,and their time-frequency characteristics are studied using CWD (Choi-William distribution). It is found that several horizontal spectra appear at early arrival time like discrete spectrum, at last time a hyperbolic curve lies in the time-frequency spectrum which corresponds to the frequency-group delay curve of plasma. To understand the time-frequency the property of a signal is helpful for obtaining the plasma parameters.
基金supported by the National Natural Science Foundation of China (62003354)。
文摘This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces the long shortterm memory(LSTM) neural network into the recognition algorithm and combines the time-frequency(TF) analysis for signal preprocessing. Five kinds of navigation jamming signals including white Gaussian noise(WGN), pulse jamming, sweep jamming, audio jamming, and spread spectrum jamming are used as input for training and recognition. Since the signal parameters and quantity are unknown in the actual scenario, this work builds a data set containing multiple kinds and parameters jamming to train the TF-LSTM. The performance of this method is evaluated by simulations and experiments. The method has higher recognition accuracy and better robustness than the existing methods, such as LSTM and the convolutional neural network(CNN).
基金National Natural Science Foundation(NNSF)of China under Grant 61771059National Natural Science Foundation(NNSF)of China under Grant 61471046Beijing Natural Science Foundation under Grant 4172022 to provide fund for conducting experiments。
文摘The roll angular rate is much crucial for the guidance and control of the projectile.Yet the high-speed rotation of the projectile brings severe challenges to the direct measurement of the roll angular rate.Nevertheless,the radial magnetometer signal is modulated by the high-speed rotation,thus the roll angular rate can be achieved by extracting the instantaneous frequency of the radial magnetometer signal.The objective of this study is to find out a precise instantaneous frequency extraction method to obtain an accurate roll angular rate.To reach this goal,a modified spline-kernelled chirplet transform(MSCT)algorithm is proposed in this paper.Due to the nonlinear frequency modulation characteristics of the radial magnetometer signal,the existing time-frequency analysis methods in literature cannot obtain an excellent energy concentration in the time-frequency plane,thereby leading to a terrible instantaneous frequency extraction accuracy.However,the MSCT can overcome the problem of bad energy concentration by replacing the short-time Fourier transform operator with the Chirp Z-transform operator based on the original spline-kernelled chirplet transform.The introduction of Chirp Z-transform can improve the construction accuracy of the transform kernel.Since the construction accuracy of the transform kernel determines the concentration of time-frequency distribution,the MSCT can obtain a more precise instantaneous frequency.The performance of the MSCT was evaluated by a series of numerical simulations,high-speed turntable experiments,and real flight tests.The evaluation results show that the MSCT has an excellent ability to process the nonlinear frequency modulation signal,and can accurately extract the roll angular rate for the high spinning projectiles.
基金supported by the State Key Program of National Natural Science Foundation of China(61032011)
文摘Multiple maneuvedng targets signal processing in high frequency radar is challenging due to the following difficulties: the interference between signals is severe because of significant spread of the target Doppler spectrum, the low signal to clutter ratio (SCR) environment degrades the performance of signal process- ing algorithms. This paper addresses this challenging problem by using an S2-method and an adaptive clutter rejection scheme. The proposed S2-method improves the S-method by eliminating inter- ference between signals, and thus it enables multi-target signals to be reconstructed individually. The proposed adaptive clutter rejec- tion scheme is based on an adaptive notch filter, which is designed according to the envelop of the clutter spectrum. Experiments with simulated targets added into radar sea clutter echo and real air target data illustrate the effectiveness of the proposed method.
文摘To diagnosethe reciprocating mechanical fault.We utilizedlocal waveti me-frequency approach.Firstly,we gave the principle.Secondly,the application of local wave ti me-frequency was given.Finally,we discusseditsvirtue in reciprocating mechanical fault diagnosis.
文摘Because the existing range-Doppler algorithm in inverse synthetic aperture sonar (ISAS) is based on target model of uniform motion, it may be invalidated for maneuvering targets due to the time-varying changes of both individual scatter′s Doppler and imaging projection plane. To resolve the problem, a new range-instantaneous Doppler imaging method is proposed for imaging maneuvering targets based on time-frequency analysis. The proposed approach is verified using real underwater acoustic data.