Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in t...Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in this paper,which can be used to reduce the sidelobe level of multiple waveforms.First,the CAC model is constructed.Then,the waveform design problem is transformed into a nonlinear optimization problem by constructing an objective function using the two indicators of peak-to-sidelobe ratio(PSLR)and integrated sidelobe ratio(ISLR).Finally,genetic algorithm(GA)is used to solve the optimization problem to get the best CAC waveforms.Simulations and experiments are conducted to verify the effectiveness of the proposed method.展开更多
Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption ...Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption that radar is smart and the target is dumb, which is not always reasonable in the modern electronic warfare. This paper focuses on the waveform design for radar and the extended target in the environment of electronic warfare. Three different countermeasure models between smart radar and dumb target, smart target and dumb radar, smart radar and smart target are proposed. Taking the signal-to-interferenceplus-noise ratio(SINR) as the metric, optimized waveforms for the first two scenarios are achieved by the general water-filling method in the presence of clutter. For the last case, the equilibrium between smart radar and smart target in the presence of clutter is given mathematically and the optimized solution is achieved through a novel two-step water-filling method on the basis of minmax theory. Simulation results under different power constraints show the power allocation strategies of radar and target and the output SINRs are analyzed.展开更多
Orthogonal waveform design is quite an important issue for waveform diversity systems. A chaos based method for the orthogonal discrete frequency coding waveform (DFCW) design is proposed to increase the insufficien...Orthogonal waveform design is quite an important issue for waveform diversity systems. A chaos based method for the orthogonal discrete frequency coding waveform (DFCW) design is proposed to increase the insufficient orthogonal waveform number and their finite coding length. Premises for chaos choosing and the frequency quantification method are discussed to obtain the best correlation properties. Simulation results show the validity of the theoretic analysis.展开更多
For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform d...For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform design which is aimed to improve the ability of discriminating target and clutter from the radar scene. Firstly, a sequence of Morlet wavelet pulses with frequency hopping and pulse position modulation by Welch-Costas array is designed. Then a waveform optimization solution is proposed which is achieved by applying the minimization mutual-information(MI) strategy. After that, with subsequent iterations of the algorithm, simulation results demonstrate that the optimal waveform design method brings an improvement in the target detection ability in the presence of noise and clutter.展开更多
In this paper,we present a novel unimodular sequence design algorithm based on the coordinate descent(CD)algorithm,aimed at countering electronic surveillance(ES)systems based on cyclostationary analysis.Our algorithm...In this paper,we present a novel unimodular sequence design algorithm based on the coordinate descent(CD)algorithm,aimed at countering electronic surveillance(ES)systems based on cyclostationary analysis.Our algorithm not only provides resistance against cyclostationary analysis(CSA)but also maintains low integrated sidelobe(ISL)characteristics.Initially,we derive the expression of the cyclostationary feature(CSF)detector and simplify it into an iterative quadratic form.Additionally,we derive a quadratic form to ensure the similarity of the autocorrelation sidelobes.To balance the minimization of the detection probability and the ISL values,we introduce a Pareto scalar that transforms the multiobjective optimization problem into a convex combination of objective functions.This approach allows us to find an optimal trade-off between the two objectives.Finally,we propose a monotonic algorithm based on the CD algorithm to counter CSA analysis.This algorithm efficiently solves the optimization problem mentioned earlier.Numerical experiments are conducted to validate the correctness and effectiveness of our proposed algorithm.展开更多
The problems of joint adaptive waveform design and baseline range design for bistatic radar to maximize the practical radar resolution were considered.Distinguishing from the conventional ambiguity function(AF)-based ...The problems of joint adaptive waveform design and baseline range design for bistatic radar to maximize the practical radar resolution were considered.Distinguishing from the conventional ambiguity function(AF)-based resolution which is only related with the transmitted waveform and bistatic geometry and could be regarded as the potential resolution of a bistatic radar system,the practical resolution involves the effect of waveform,signal-to-noise ratio(SNR)as well as the measurement model.Thus,it is more practical and will have further significant application in target detection and tracking.The constraint optimization procedure of joint adaptive waveform design and baseline range design for maximizing the practical resolution of bistatic radar system under dynamic target scenario was devised.Simulation results show that the range and velocity resolution are enhanced according to the adaptive waveform and bistatic radar configuration.展开更多
针对主瓣干扰(main-lobe jamming,MLJ)在空域与有用信号(signal of interest,SOI)高度相关而难以被有效抑制的问题,基于跳变编码波形的抗MLJ系统通过对波形进行编码调制,接收端据此重构接收信号,利用码-空映射等效改变SOI空域信道,实现...针对主瓣干扰(main-lobe jamming,MLJ)在空域与有用信号(signal of interest,SOI)高度相关而难以被有效抑制的问题,基于跳变编码波形的抗MLJ系统通过对波形进行编码调制,接收端据此重构接收信号,利用码-空映射等效改变SOI空域信道,实现SOI与干扰信号在空域的分辨。但理论分析发现,信号带宽的增大将掩盖编码特征并使该方法失效。为此,利用多抽头系统的时-频映射特质,通过多抽头结构设计降低带宽掩盖,重新凸显编码特征。仿真结果显示,所提方法可在10 MHz的全带宽内,使干扰对消比大于20 dB,SOI对消比小于3 dB,具有较好的抗主瓣非零带宽干扰性能。展开更多
The hybrid waveform of linear frequency modulation and binary phase shift keying(LFM-BPSK)can take advantages of the LFM and BPSK signals,and reduce the defects of them.However,with the development of interception tec...The hybrid waveform of linear frequency modulation and binary phase shift keying(LFM-BPSK)can take advantages of the LFM and BPSK signals,and reduce the defects of them.However,with the development of interception technology for the LFM-BPSK signal,the application of the signal is limited.In this paper,to improve the anti-interception performance of the hybrid waveform,a new waveform of LFM-BPSK with the varying chirp rate(denoted as VCR-LFM-BPSK)is designed.In this design,based on the working principle of the interception frame for the LFM-BPSK signal,different chirp rates are introduced in different sub-pulses to prevent the signal from being intercepted by the frame.Then,to further improve the anti-interception performance of the VCR-LFM-BPSK signal,the chirp rates are optimized by minimizing the interception capability of the interceptor.Moreover,based on the VCR-LFM-BPSK signal with the optimized chirp rates,the binary phases are designed via a multiobjective Pareto optimization to improve the capabilities of autocorrelation and spectrum.Simulation results demonstrate that the designed VCR-LFM-BPSK signal outperforms the traditional LFM-BPSK signal in countering the advanced interception technologies.展开更多
在雷达探测领域,由于线性调频(linear frequency modulation,LFM)信号近主瓣区的较高旁瓣电平,强目标旁瓣对弱目标的遮盖现象使得传统雷达对这类弱目标的检测能力大幅下降。对于这一问题,提出一种混沌波形近主瓣区低旁瓣的优化方法。该...在雷达探测领域,由于线性调频(linear frequency modulation,LFM)信号近主瓣区的较高旁瓣电平,强目标旁瓣对弱目标的遮盖现象使得传统雷达对这类弱目标的检测能力大幅下降。对于这一问题,提出一种混沌波形近主瓣区低旁瓣的优化方法。该方法在保持混沌波形优秀的抗截获和抗干扰能力的基础上,结合混沌波形较低的旁瓣电平的特性,充分利用双混沌信号设计的频谱特性和失配滤波器时频自由度来调整脉冲压缩后信号的能量分布。仿真结果表明,所设计的混沌波形具有比较好的距离分辨率,并且经失配滤波器脉冲压缩后的近主瓣区的旁瓣电平达到较低水平,对检测距离相近情况下的弱目标具有一定意义。展开更多
通信感知一体化(Integrated Sensing and Communication,ISAC)作为6G的关键技术之一,广泛应用于智慧交通、智能家居等领域。随着频谱资源的紧缺、技术发展的融合,促使通信和感知功能的一体化,其中ISAC的波形设计是同时实现高效率通信和...通信感知一体化(Integrated Sensing and Communication,ISAC)作为6G的关键技术之一,广泛应用于智慧交通、智能家居等领域。随着频谱资源的紧缺、技术发展的融合,促使通信和感知功能的一体化,其中ISAC的波形设计是同时实现高效率通信和高精度感知的研究重点。从ISAC技术趋势、波形设计重要性、应用场景和发展现状四方面进行了简要介绍,对以通信为主的波形设计、以感知为主的波形设计和波形复用设计进行了分析总结,阐述了联合波形设计的一体化性能边界以及潜在的一体化波形新型设计方式;并对ISAC波形设计的发展方向进行展望。展开更多
基金supported by the National Natural Science Foundation of China(62001481,61890542)the Natural Science Foundation of Hunan Province(2021JJ40686).
文摘Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in this paper,which can be used to reduce the sidelobe level of multiple waveforms.First,the CAC model is constructed.Then,the waveform design problem is transformed into a nonlinear optimization problem by constructing an objective function using the two indicators of peak-to-sidelobe ratio(PSLR)and integrated sidelobe ratio(ISLR).Finally,genetic algorithm(GA)is used to solve the optimization problem to get the best CAC waveforms.Simulations and experiments are conducted to verify the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(61302153)the Aeronautical Science Foundation of China(20160196001)
文摘Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption that radar is smart and the target is dumb, which is not always reasonable in the modern electronic warfare. This paper focuses on the waveform design for radar and the extended target in the environment of electronic warfare. Three different countermeasure models between smart radar and dumb target, smart target and dumb radar, smart radar and smart target are proposed. Taking the signal-to-interferenceplus-noise ratio(SINR) as the metric, optimized waveforms for the first two scenarios are achieved by the general water-filling method in the presence of clutter. For the last case, the equilibrium between smart radar and smart target in the presence of clutter is given mathematically and the optimized solution is achieved through a novel two-step water-filling method on the basis of minmax theory. Simulation results under different power constraints show the power allocation strategies of radar and target and the output SINRs are analyzed.
基金supported by the Hunan Province Distinguished Ph.D. Innovation Fund (CX2012B018)the National University of Defense Technology Distinguished Ph.D. Innovation Fund (B120403)
文摘Orthogonal waveform design is quite an important issue for waveform diversity systems. A chaos based method for the orthogonal discrete frequency coding waveform (DFCW) design is proposed to increase the insufficient orthogonal waveform number and their finite coding length. Premises for chaos choosing and the frequency quantification method are discussed to obtain the best correlation properties. Simulation results show the validity of the theoretic analysis.
基金supported by the National Natural Science Foundation of China(6107114561271331)
文摘For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform design which is aimed to improve the ability of discriminating target and clutter from the radar scene. Firstly, a sequence of Morlet wavelet pulses with frequency hopping and pulse position modulation by Welch-Costas array is designed. Then a waveform optimization solution is proposed which is achieved by applying the minimization mutual-information(MI) strategy. After that, with subsequent iterations of the algorithm, simulation results demonstrate that the optimal waveform design method brings an improvement in the target detection ability in the presence of noise and clutter.
基金support of the National Natural Science Foundation of China under grant numbers 62101570 and 61901494financial support has played a crucial role in the successful completion of this research.
文摘In this paper,we present a novel unimodular sequence design algorithm based on the coordinate descent(CD)algorithm,aimed at countering electronic surveillance(ES)systems based on cyclostationary analysis.Our algorithm not only provides resistance against cyclostationary analysis(CSA)but also maintains low integrated sidelobe(ISL)characteristics.Initially,we derive the expression of the cyclostationary feature(CSF)detector and simplify it into an iterative quadratic form.Additionally,we derive a quadratic form to ensure the similarity of the autocorrelation sidelobes.To balance the minimization of the detection probability and the ISL values,we introduce a Pareto scalar that transforms the multiobjective optimization problem into a convex combination of objective functions.This approach allows us to find an optimal trade-off between the two objectives.Finally,we propose a monotonic algorithm based on the CD algorithm to counter CSA analysis.This algorithm efficiently solves the optimization problem mentioned earlier.Numerical experiments are conducted to validate the correctness and effectiveness of our proposed algorithm.
基金Project supported by the Program for New Century Excellent Talents in University,ChinaProject(61171133)supported by the National Natural Science Foundation of China+2 种基金Project(11JJ1010)supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProject(61101182)supported by the National Natural Science Foundation for Young Scientists of ChinaProject(20124307110013)supported by the Doctoral Program of Higher Education of China
文摘The problems of joint adaptive waveform design and baseline range design for bistatic radar to maximize the practical radar resolution were considered.Distinguishing from the conventional ambiguity function(AF)-based resolution which is only related with the transmitted waveform and bistatic geometry and could be regarded as the potential resolution of a bistatic radar system,the practical resolution involves the effect of waveform,signal-to-noise ratio(SNR)as well as the measurement model.Thus,it is more practical and will have further significant application in target detection and tracking.The constraint optimization procedure of joint adaptive waveform design and baseline range design for maximizing the practical resolution of bistatic radar system under dynamic target scenario was devised.Simulation results show that the range and velocity resolution are enhanced according to the adaptive waveform and bistatic radar configuration.
基金supported by the Equipment Pre-research Field Foundation of China(61404150102)the National Postdoctoral Program for Innovative Talents(BX20180240).
文摘The hybrid waveform of linear frequency modulation and binary phase shift keying(LFM-BPSK)can take advantages of the LFM and BPSK signals,and reduce the defects of them.However,with the development of interception technology for the LFM-BPSK signal,the application of the signal is limited.In this paper,to improve the anti-interception performance of the hybrid waveform,a new waveform of LFM-BPSK with the varying chirp rate(denoted as VCR-LFM-BPSK)is designed.In this design,based on the working principle of the interception frame for the LFM-BPSK signal,different chirp rates are introduced in different sub-pulses to prevent the signal from being intercepted by the frame.Then,to further improve the anti-interception performance of the VCR-LFM-BPSK signal,the chirp rates are optimized by minimizing the interception capability of the interceptor.Moreover,based on the VCR-LFM-BPSK signal with the optimized chirp rates,the binary phases are designed via a multiobjective Pareto optimization to improve the capabilities of autocorrelation and spectrum.Simulation results demonstrate that the designed VCR-LFM-BPSK signal outperforms the traditional LFM-BPSK signal in countering the advanced interception technologies.
文摘在雷达探测领域,由于线性调频(linear frequency modulation,LFM)信号近主瓣区的较高旁瓣电平,强目标旁瓣对弱目标的遮盖现象使得传统雷达对这类弱目标的检测能力大幅下降。对于这一问题,提出一种混沌波形近主瓣区低旁瓣的优化方法。该方法在保持混沌波形优秀的抗截获和抗干扰能力的基础上,结合混沌波形较低的旁瓣电平的特性,充分利用双混沌信号设计的频谱特性和失配滤波器时频自由度来调整脉冲压缩后信号的能量分布。仿真结果表明,所设计的混沌波形具有比较好的距离分辨率,并且经失配滤波器脉冲压缩后的近主瓣区的旁瓣电平达到较低水平,对检测距离相近情况下的弱目标具有一定意义。
文摘通信感知一体化(Integrated Sensing and Communication,ISAC)作为6G的关键技术之一,广泛应用于智慧交通、智能家居等领域。随着频谱资源的紧缺、技术发展的融合,促使通信和感知功能的一体化,其中ISAC的波形设计是同时实现高效率通信和高精度感知的研究重点。从ISAC技术趋势、波形设计重要性、应用场景和发展现状四方面进行了简要介绍,对以通信为主的波形设计、以感知为主的波形设计和波形复用设计进行了分析总结,阐述了联合波形设计的一体化性能边界以及潜在的一体化波形新型设计方式;并对ISAC波形设计的发展方向进行展望。