Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution...Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.展开更多
The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory ...The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory study to evaluate the effect of a thatch layer on the dynamics of water-soluble P in undisturbed cores taken from a pasture. Cores with and without a thatch layer received a surface application of broiler litter (5 thm-2) and were incubated at 25 oC for 56 d. The result showed that on the soil surface the contents of water soluble-P (39 kghm-2) of the cores with the thatch layer was higher than that (20 kghm-2) of the cores without the thatch layer. Therefore on well-established pastures fertilized with broiler litter, the presence of a thatch layer might lead to high concentrations of water-soluble P on the soil surface.展开更多
We aim to present an overview of the status of adhesives in the wood industry, especially in the area of wood-based panels. The review summarizes the current state of research of two kinds of adhesives, i.e., syntheti...We aim to present an overview of the status of adhesives in the wood industry, especially in the area of wood-based panels. The review summarizes the current state of research of two kinds of adhesives, i.e., synthetic adhesives and natural adhesives. Synthetic adhesives, consisting of urea-formaldehyde resins (UF), phenol-formaldehyde resins (PF), polyvinyl acetate emulsion (PVAc) and isocyanates, are widely used. For UF, most investigations are concerned with the reduction of free formaldehyde; for PF, most studies focus on finding new chemicals to replace phenol. PVAc has poor properties, but these can be improved by a blending reactions and copolymerization with other chemicals. Isocyanate is an environmentally friendly synthetic adhesive, but also suffers from inadequate properties. Natural adhesives, such as protein/starch, lignin and tannins, have poor bonding effect that limits their level of use, but their main advantages are that they are environmentally friendly and a renewable resource. Studies of modification can improve the bonding performances and gradually cause natural adhesives to become applied in industrial production. Some proposals for future development and the importance of environmentally friendly adhesives are provided, which will be helpful in future theoretical and experimental research.展开更多
There remain a number of unsolved problems about chemical reactions, and it is significant to explore new detection methods because they always offer some unique information about reactions from new points of view. Fo...There remain a number of unsolved problems about chemical reactions, and it is significant to explore new detection methods because they always offer some unique information about reactions from new points of view. For the first time, the solidification course of a modified two-component acrylic structural adhesive is measured by using reed-vibration mechanical spectroscopy for liquids (RMS-L) in this work, and results show that there are four sequential processes of mechanical spectra with time. The in-depth analyses indicate that RMS-L can detect in real-time the generation and disappearance of active free radicals, as well as the chemical cross-link processes in the adhesive. This kind of real-time detection will undoubtedly facilitate the study of the chemical reaction dynamics controlled by free radicals.展开更多
This investigation was conducted to determine the feasibility of using a two-component polyurethane (PUR) adhesive, with special waterproof properties, in constructing wooden structures. We designed and conducted te...This investigation was conducted to determine the feasibility of using a two-component polyurethane (PUR) adhesive, with special waterproof properties, in constructing wooden structures. We designed and conducted tests to compare the shear strength and adhesion performance of PUR with polyvinyl acetate (PVAc) adhesive on block-shear specimens constructed of oriental beech (Fagus orientalis L.), fir (Abies alba Mill.), poplar (Populus deltoides Bartr.), white oak (Quercus alba L.), sycamore (Platanus orientalis L.) and white walnut (Juglans cinerea L.). The values of the percentage of wood failure were also determined in specimens constructed with each adhesive. The highest shear strength values of both adhesives were obtained in specimens constructed of beech, while the lowest shear strength values were obtained in fir and poplar specimens. Average shear strength of the PUR adhesive was 16.5% higher than that of the PVAc adhesive. Specimens constructed of fir, poplar and sycamore were characterised by the highest percentages of wood failure, whereas the lowest average percentages of wood failure were obtained in beech and oak specimens. With the exception of oak specimens, there was no statistically significant difference between percentage of wood failure among the PUR and PVAc adhesives. Generally, the PUR adhesive showed an acceptable adhesion performance on wood materials used in our study.展开更多
The preparation process of electrically conductive filler for anisotropic conductive adhesive was performed and discussed.The spherical filler contains tri-layer structures: resin core,Ni-P intermediate coating layer,...The preparation process of electrically conductive filler for anisotropic conductive adhesive was performed and discussed.The spherical filler contains tri-layer structures: resin core,Ni-P intermediate coating layer,Au outer coating layer.The 4 μm resin spherical cores were synthesized by monodispersion polymerization method.Then they were contributed to electrical conductivity by electrolessly plating Ni-P layer and gold layer.These particles have good corrosion resistance,high stability,and enough mechanical strength.When mixed with thermosetting epoxy resin to produce anisotropic conductive adhesive(ACA),it can realize a good conductive bonding between bumps on dies and pads on substrates.This environmentally friendly conductive material offers numerous advantages over conventional solder technology and is an ideal substitute for the lead-contained solder in electronics packaging.展开更多
This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have ...This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have been calculated in the frequency domain by using the finite element method, and the time domain response has been reconstructed by applying an inverse fast Fourier transform. Numerical results are presented showing the normal surface displacement for several configurations: a single aluminum plate, a three-layer bonded plate, and a two-layer plate. The characteristics of the laser-generated Lamb waves for each particular case have been investigated. In addition, the sensitivity of the transient responses to variations of material properties (elastic modulus, viscoelastic modulus, and thickness) of the adhesive layer has been studied in detail.展开更多
The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of ...The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE'film surfaces, which was confirmed by T-peel and lap-shear tests.展开更多
Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employ...Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employs a self- consistent method to derive the Lennard-Jones surface force law from the interatomic Lennard-Jones potential with emphasis on the relationships between the parameters. The ei^ect of using correct parameters in the adhesion models is demonstrated in single sphere-flat contact via continuum models and an atomistic model. Furthermore, the adhesion hysteresis behaviour is investigated, and the S-shaped force-distance relation is revealed by the atomistic model. It shows that the adhesion hysteresis loop is generated by the jump-to-contact and jump-off-contact, which are illustrated by the S-shaped force-distance curve.展开更多
Endoscopic mucosal resection(EMR)and endoscopic submucosal dissection(ESD)are well-established therapeutics for gastrointestinal neoplasias,but complications after EMR/ESD,including bleeding and perforation,result in ...Endoscopic mucosal resection(EMR)and endoscopic submucosal dissection(ESD)are well-established therapeutics for gastrointestinal neoplasias,but complications after EMR/ESD,including bleeding and perforation,result in additional treatment morbidity and even threaten the lives of patients.Thus,designing biomaterials to treat gastric bleeding and wound healing after endoscopic treatment is highly desired and remains a challenge.Herein,a series of injectable pH-responsive selfhealing adhesive hydrogels based on acryloyl-6-aminocaproic acid(AA)and AA-g-N-hydroxysuccinimide(AA-NHS)were developed,and their great potential as endoscopic sprayable bioadhesive materials to efficiently stop hemorrhage and promote the wound healing process was further demonstrated in a swine gastric hemorrhage/wound model.The hydrogels showed a suitable gelation time,an autonomous and efficient self-healing capacity,hemostatic properties,and good biocompatibility.With the introduction of AA-NHS as a micro-cross-linker,the hydrogels exhibited enhanced adhesive strength.A swine gastric hemorrhage in vivo model demonstrated that the hydrogels showed good hemostatic performance by stopping acute arterial bleeding and preventing delayed bleeding.A gastric wound model indicated that the hydrogels showed excellent treatment effects with significantly enhanced wound healing with type I collagen deposition,α-SMA expression,and blood vessel formation.These injectable self-healing adhesive hydrogels exhibited great potential to treat gastric wounds after endoscopic treatment.展开更多
Conductive polymers(CPs)are generally insoluble,and developing hydrophilic CPs is significant to broaden the applications of CPs.In this work,a mussel-inspired strategy was proposed to construct hydrophilic CP nanopar...Conductive polymers(CPs)are generally insoluble,and developing hydrophilic CPs is significant to broaden the applications of CPs.In this work,a mussel-inspired strategy was proposed to construct hydrophilic CP nanoparticles(CP NPs),while endowing the CP NPs with redox activity and biocompatibility.This is a universal strategy applicable for a series of CPs,including polyaniline,polypyrrole,and poly(3,4-ethylenedioxythiophene).The catechol/quinone contained sulfonated lignin(LS)was doped into various CPs to form CP/LS NPs with hydrophilicity,conductivity,and redox activity.These CP/LS NPs were used as versatile nanofillers to prepare the conductive hydrogels with long-term adhesiveness.The CP/LS NPs-incorporated hydrogels have a good conductivity because of the uniform distribution of the hydrophilic NPs in the hydrogel network,forming a well-connected electric path.The hydrogel exhibits long-term adhesiveness,which is attributed to the mussel-inspired dynamic redox balance of catechol/quinone groups on the CP/LS NPs.This conductive and adhesive hydrogel shows good electroactivity and biocompatibility and therefore has broad applications in electrostimulation of tissue regeneration and implantable bioelectronics.展开更多
Objective To investigate the effect of multiple coatings of the one-step self-etching adhesive on immediate microtensile bond strength to primary dentin.Methods Twelve caries-free human primary molars were randomly di...Objective To investigate the effect of multiple coatings of the one-step self-etching adhesive on immediate microtensile bond strength to primary dentin.Methods Twelve caries-free human primary molars were randomly divided into 2 groups with 6 teeth each.In group 1,each tooth was hemisected into two halves.One half was assigned to control subgroup 1,which was bonded with a single-step self-etching adhesive according to the manufacturer's instructions;the other half was assigned to experimental subgroup 1 in which the adhesive was applied three times before light curing.In group 2,the teeth were also hemisected into two halves.One half was assigned to control subgroup 2,which was bonded with the single-step self-etching adhesive according to the manufacturer's instructions;the other half was assigned to experimental subgroup 2 in which three layers of adhesive were applied with light curing each successive layer.Microtensile bond strength was immediately tested after specimen preparation.Results When the adhesive was applied three times before light curing,the bond strength of the experimental subgroup 1(n=33,57.49±11.61 MPa) was higher than that of the control subgroup 1(n=31,49.71±11.43 MPa,P<0.05).When using the technique of applying multiple layers of adhesive with light curing each successive layer,no difference of immediate bond strength was observed between the control subgroup 2 and the experimental subgroup 2(P>0.05).Conclusion Multiple coatings of one-step self-etching adhesive can increase the immediate bond strength to primary dentin when using the technique of light-curing after applying three layers of adhesive.展开更多
The effect of introducing attenuation on Lamb wave dispersion curves is studied in this paper. Attenuation is introduced to a three-layered composite plate by an adhesive bond layer with viscous behavior. No changes a...The effect of introducing attenuation on Lamb wave dispersion curves is studied in this paper. Attenuation is introduced to a three-layered composite plate by an adhesive bond layer with viscous behavior. No changes are required to the transfer matrix formulation for the propagation of elastic waves. By introduction of a complex wavenumber, the model can be used to the propagation of attenuative Lamb waves. Numerical examples for a three-layered aluminium-epoxy-aluminium plate show that attenuation values of each mode in plates are related not only to attenuation, but also to the thickness of the bonded layer, which is in agreement with practical situations.展开更多
Osteoarthritis(OA)is the most common type of degenerative joint disease which affects 7%of the global population and more than 500 million people worldwide.One research frontier is the development of hydrogels for OA ...Osteoarthritis(OA)is the most common type of degenerative joint disease which affects 7%of the global population and more than 500 million people worldwide.One research frontier is the development of hydrogels for OA treatment,which operate either as functional scaffolds of tissue engineering or as delivery vehicles of functional additives.Both approaches address the big challenge:establishing stable integration of such delivery systems or implants.Adhesive hydrogels provide possible solutions to this challenge.However,few studies have described the current advances in using adhesive hydrogel for OA treatment.This review summarizes the commonly used hydrogels with their adhesion mechanisms and components.Additionally,recognizing that OA is a complex disease involving different biological mechanisms,the bioactive therapeutic strategies are also presented.By presenting the adhesive hydrogels in an interdisciplinary way,including both the fields of chemistry and biology,this review will attempt to provide a comprehensive insight for designing novel bioadhesive systems for OA therapy.展开更多
Selective hydrogenation of chloronitrobenzene(CNB) to chloroaniline(CAN) catalyzed by water-soluble Ru/Pt bimetallic catalyst in an aqueous-organic biphasic system was studied. It was found that the catalytic activity...Selective hydrogenation of chloronitrobenzene(CNB) to chloroaniline(CAN) catalyzed by water-soluble Ru/Pt bimetallic catalyst in an aqueous-organic biphasic system was studied. It was found that the catalytic activity increased obviously due to the addition of platinum. Ru/Pt bimetallic catalysts exhibited a strong synergistic effect when the molar ratio of Pt was in the range of 5%—80%. Under the mild conditions including a temperature of 25 ℃, a hydrogen pressure of 1.0 MPa and a Pt molar ratio of 20%, the conversion of p-chloronitrobenzene(p-CNB) reached 99.9%, with the selectivity to p-chloroaniline(p-CAN) equating to 99.4%. The Ru/Pt catalyst also showed high activity and selectivity for the hydrogenation of other chloro- and dichloro-nitrobenzenes with different substituted positions. In addition, the catalyst can be recycled five times without significant loss of activity.展开更多
Numerous non-destructive techniques are being investigated for assuring quality of the adhesive bonds.The research presented here is focused on non-destructive assessment of carbon fibre reinforced polymer(CFRP)parts....Numerous non-destructive techniques are being investigated for assuring quality of the adhesive bonds.The research presented here is focused on non-destructive assessment of carbon fibre reinforced polymer(CFRP)parts.The surface condition directly influences the performance of adhesive bonds.The structural joints should ensure safe usage of a structure.However,some modifications of the surface may lead to weak bond that cannot carry the desired load.This is why there is a search for methods of surface assessment before bonding.Moreover,reliable techniques are required to allow to verify the integrity of the adhesive bond after manufacturing or bonded repair.We focus on the laser induced fluorescence(LIF)method for assessing the surface state.The LIF is a noncontact measurement method.In the context of adhesive bond assessment the electromechanical impedance(EMI)method is studied.The EMI uses surface bonded piezoelectric sensors for excitation and sensing.The investigated samples were made of CFRP layers.The samples were treated at elevated temperatures.The influence of the thermal treatment was studied using LIF.The thermal treatment at 220℃could be clearly distinguishedrom the rest of the considered samples.The thermally treated plates were bonded to untreated plate and then they were measured with the EMI method to study the influence of the treatment on the adhesive bond.The changes of EMI spectra were significant for the treatment at 280 ℃ and for some thermally treated samples that were later contaminated with de-icing fluid.展开更多
Accumulation of ice on airfoils and engines seriously endangers the safety of the fight.The accurate measurement of adhesion strength at the ice-substrate interface plays a vital role in the design of anti/de-icing sy...Accumulation of ice on airfoils and engines seriously endangers the safety of the fight.The accurate measurement of adhesion strength at the ice-substrate interface plays a vital role in the design of anti/de-icing systems.In this pursuit,the present study envisages the evaluation of the stress at the icesubstrate interface to guide the design of experimental set-ups and improve the measurement accuracy of shear strength using the finite element analysis(FEA)method.By considering such factors as the peeling stress,maximum von-mises stress and uniformity of stress,the height and radius of ice and the loading height are investigated.Based on the simulation results,appropriate parameters are selected for the experimental validation.Simulation results show that the peeling stress is decreased by reducing the loading height and increasing the height of ice.Higher ice,increasing loading height and smaller ice radius are found to be beneficial for the uniformity of stress.To avoid cracks or ice-breaking,it is imperative that the ice should be of a small radius and greater height.Parameters including the ice height of 25 mm,radius of 20 mm,and loading height of 9 mm are adopted in the experiment.The results of FEA and the experimental validation can significantly enhance the measurement accuracy of shear strength.展开更多
The incidence rate of colon cancer ranks the third among malignant tumors worldwide.Gloeostereum incarnatum(GI),a fungus with homology of medicine and food,has multiple pharmacological activities.It was investigated i...The incidence rate of colon cancer ranks the third among malignant tumors worldwide.Gloeostereum incarnatum(GI),a fungus with homology of medicine and food,has multiple pharmacological activities.It was investigated in this study that the anti-colon cancer effect of polysaccharides purifi ed from GI(GIPS)in ApcMinC/Gpt mice(an in situ colon cancer mouse model).Eight-week administration with GIPS at doses of 30 or 90 mg/kg strongly inhibited tumor growth including the reduction on numbers and the suppression of the size without infl uencing the animals’body weight and organ functions.According to the proteomics performing by antibody array,among 308 detected cytokines,GIPS significantly regulated 89 of them.Compared with vehicle-treated mice,GIPS effectively reduced the levels of interleukin(IL)-1β,IL-4,IL-6,IL-17,IL-22,tumor necrosis factor(TNF)-α,matrix metalloproteinase(MMP)-2,and enhanced the levels of IL-15 and IL-18 in serum and/or colon tissues,which suggested its anti-inflammation of GIPS.GIPS suppressed nuclear aggregation of β-catenin,affected the expression of WNT1 and related proteins,thereby regulated the activation of the Wnt signaling.Altogether,GIPS can inhibit the growth of colon cancer,at least partially,via inhibiting the Wnt/β-catenin signaling pathway.展开更多
The objective of this study was to evaluate the effect of functionalizing a dental adhesive resin with YbF_3/SiO_2 fillers for use as radiopacifiers.Particles of YbF_3/SiO_2 were obtained with the high-energy mechanic...The objective of this study was to evaluate the effect of functionalizing a dental adhesive resin with YbF_3/SiO_2 fillers for use as radiopacifiers.Particles of YbF_3/SiO_2 were obtained with the high-energy mechanical milling method and characterized by both physical and chemical methods.After characterization,the particles were sieved and silanized prior to being incorporated into an adhesive resin.The stability of the particle suspension was then evaluated.After light activation,the radiopacity,degree of conversion,flexural strength and elastic modulus were determined.The dental adhesive resins with 10 and 15 wt% of filler provided satisfactory radiopacity,while flexural strength and elastic modulus were not affected.The degree of conversion was statistically lower than that of the control(p<0.05).The method used for incorporating the tested ytterbium fluoride/silicon dioxide particles at concentrations of 10 and 15 wt% was shown to be feasible for the development of a radiopaque dental adhesive system.展开更多
The effect of hot-humid exposure(i.e., 40 C and 98% R.H.) on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decreas...The effect of hot-humid exposure(i.e., 40 C and 98% R.H.) on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.展开更多
文摘Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.
文摘The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory study to evaluate the effect of a thatch layer on the dynamics of water-soluble P in undisturbed cores taken from a pasture. Cores with and without a thatch layer received a surface application of broiler litter (5 thm-2) and were incubated at 25 oC for 56 d. The result showed that on the soil surface the contents of water soluble-P (39 kghm-2) of the cores with the thatch layer was higher than that (20 kghm-2) of the cores without the thatch layer. Therefore on well-established pastures fertilized with broiler litter, the presence of a thatch layer might lead to high concentrations of water-soluble P on the soil surface.
基金supported by the Teaching Reform Key Research Project of Beijing Forestry University, China (No. BJFU2010JG014)
文摘We aim to present an overview of the status of adhesives in the wood industry, especially in the area of wood-based panels. The review summarizes the current state of research of two kinds of adhesives, i.e., synthetic adhesives and natural adhesives. Synthetic adhesives, consisting of urea-formaldehyde resins (UF), phenol-formaldehyde resins (PF), polyvinyl acetate emulsion (PVAc) and isocyanates, are widely used. For UF, most investigations are concerned with the reduction of free formaldehyde; for PF, most studies focus on finding new chemicals to replace phenol. PVAc has poor properties, but these can be improved by a blending reactions and copolymerization with other chemicals. Isocyanate is an environmentally friendly synthetic adhesive, but also suffers from inadequate properties. Natural adhesives, such as protein/starch, lignin and tannins, have poor bonding effect that limits their level of use, but their main advantages are that they are environmentally friendly and a renewable resource. Studies of modification can improve the bonding performances and gradually cause natural adhesives to become applied in industrial production. Some proposals for future development and the importance of environmentally friendly adhesives are provided, which will be helpful in future theoretical and experimental research.
基金supported by the Natural Science Foundations of Xinjiang Automatic Region, China (Grant Nos. 200821104, 2009211B16, and 2010211B16)the Support Program of Science and Technology of Xinjiang Automatic Region, China (Grant No. 201091112)the West-Light Foundation of the Chinese Academy of Sciences (Grant No. RCPY200906)
文摘There remain a number of unsolved problems about chemical reactions, and it is significant to explore new detection methods because they always offer some unique information about reactions from new points of view. For the first time, the solidification course of a modified two-component acrylic structural adhesive is measured by using reed-vibration mechanical spectroscopy for liquids (RMS-L) in this work, and results show that there are four sequential processes of mechanical spectra with time. The in-depth analyses indicate that RMS-L can detect in real-time the generation and disappearance of active free radicals, as well as the chemical cross-link processes in the adhesive. This kind of real-time detection will undoubtedly facilitate the study of the chemical reaction dynamics controlled by free radicals.
文摘This investigation was conducted to determine the feasibility of using a two-component polyurethane (PUR) adhesive, with special waterproof properties, in constructing wooden structures. We designed and conducted tests to compare the shear strength and adhesion performance of PUR with polyvinyl acetate (PVAc) adhesive on block-shear specimens constructed of oriental beech (Fagus orientalis L.), fir (Abies alba Mill.), poplar (Populus deltoides Bartr.), white oak (Quercus alba L.), sycamore (Platanus orientalis L.) and white walnut (Juglans cinerea L.). The values of the percentage of wood failure were also determined in specimens constructed with each adhesive. The highest shear strength values of both adhesives were obtained in specimens constructed of beech, while the lowest shear strength values were obtained in fir and poplar specimens. Average shear strength of the PUR adhesive was 16.5% higher than that of the PVAc adhesive. Specimens constructed of fir, poplar and sycamore were characterised by the highest percentages of wood failure, whereas the lowest average percentages of wood failure were obtained in beech and oak specimens. With the exception of oak specimens, there was no statistically significant difference between percentage of wood failure among the PUR and PVAc adhesives. Generally, the PUR adhesive showed an acceptable adhesion performance on wood materials used in our study.
基金The National Natural Science Foundation of China(No.10474024)NSFC-RGC Joint Research Scheme(No.60318002)+1 种基金Youth Chenguang Project of Science and Technology of Wuhan City of China(No.20065004116-10)StateKey Lab.of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology,No.WUT2004 M08)
文摘The preparation process of electrically conductive filler for anisotropic conductive adhesive was performed and discussed.The spherical filler contains tri-layer structures: resin core,Ni-P intermediate coating layer,Au outer coating layer.The 4 μm resin spherical cores were synthesized by monodispersion polymerization method.Then they were contributed to electrical conductivity by electrolessly plating Ni-P layer and gold layer.These particles have good corrosion resistance,high stability,and enough mechanical strength.When mixed with thermosetting epoxy resin to produce anisotropic conductive adhesive(ACA),it can realize a good conductive bonding between bumps on dies and pads on substrates.This environmentally friendly conductive material offers numerous advantages over conventional solder technology and is an ideal substitute for the lead-contained solder in electronics packaging.
基金Project supported by the National Natural Science Foundation of China(Grant No.11074125)the Major Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.10KJA140006)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.08KJB140003)the Student Research Foundation of the Jiangsu University,China(Grant Nos.2010074 and 09A101)
文摘This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have been calculated in the frequency domain by using the finite element method, and the time domain response has been reconstructed by applying an inverse fast Fourier transform. Numerical results are presented showing the normal surface displacement for several configurations: a single aluminum plate, a three-layer bonded plate, and a two-layer plate. The characteristics of the laser-generated Lamb waves for each particular case have been investigated. In addition, the sensitivity of the transient responses to variations of material properties (elastic modulus, viscoelastic modulus, and thickness) of the adhesive layer has been studied in detail.
文摘The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE'film surfaces, which was confirmed by T-peel and lap-shear tests.
基金supported by the National Natural Science Foundation of China (Grant No. 10476019)the Fundamental Research Funds for the Central Universities of China (Grant No. JY10000904018)
文摘Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employs a self- consistent method to derive the Lennard-Jones surface force law from the interatomic Lennard-Jones potential with emphasis on the relationships between the parameters. The ei^ect of using correct parameters in the adhesion models is demonstrated in single sphere-flat contact via continuum models and an atomistic model. Furthermore, the adhesion hysteresis behaviour is investigated, and the S-shaped force-distance relation is revealed by the atomistic model. It shows that the adhesion hysteresis loop is generated by the jump-to-contact and jump-off-contact, which are illustrated by the S-shaped force-distance curve.
基金This work was jointly supported by the National Natural Science Foundation of China(grant Nos.:51973172,51673155,81201927,82002957 and 81672460)the National Key Research and Development Plan of China(No.2018YFC0115300)+5 种基金the State Key Laboratory for Mechanical Behavior of Materials,the World-Class Universities(Disciplines)the Characteristic Development Guidance Funds for the Central Universities,the Natural Science Foundation of Shaanxi Province(No.2020JC-03 and 2019TD-020)the Innovation Talent Promotion Plan of Shaanxi(No.2017KJXX-07)the Key Research and Development Program of Shaanxi Province(No.2019SF-012)the Opening Project of Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research,College of Stomatology,Xi’an Jiaotong University(No.2019LHM-KFKT008)Fundamental Research Funds for the Central Universities of China(No.xjj2018090).
文摘Endoscopic mucosal resection(EMR)and endoscopic submucosal dissection(ESD)are well-established therapeutics for gastrointestinal neoplasias,but complications after EMR/ESD,including bleeding and perforation,result in additional treatment morbidity and even threaten the lives of patients.Thus,designing biomaterials to treat gastric bleeding and wound healing after endoscopic treatment is highly desired and remains a challenge.Herein,a series of injectable pH-responsive selfhealing adhesive hydrogels based on acryloyl-6-aminocaproic acid(AA)and AA-g-N-hydroxysuccinimide(AA-NHS)were developed,and their great potential as endoscopic sprayable bioadhesive materials to efficiently stop hemorrhage and promote the wound healing process was further demonstrated in a swine gastric hemorrhage/wound model.The hydrogels showed a suitable gelation time,an autonomous and efficient self-healing capacity,hemostatic properties,and good biocompatibility.With the introduction of AA-NHS as a micro-cross-linker,the hydrogels exhibited enhanced adhesive strength.A swine gastric hemorrhage in vivo model demonstrated that the hydrogels showed good hemostatic performance by stopping acute arterial bleeding and preventing delayed bleeding.A gastric wound model indicated that the hydrogels showed excellent treatment effects with significantly enhanced wound healing with type I collagen deposition,α-SMA expression,and blood vessel formation.These injectable self-healing adhesive hydrogels exhibited great potential to treat gastric wounds after endoscopic treatment.
基金This work was financially supported by the R&D Program in Key Areas of Guangdong(2019B010941002)National Key Research and Development Program of China(2016YFB0700802),NSFC(81671824,31700841)Fundamental Research Funds for the Central Universities(2682019JQ03).
文摘Conductive polymers(CPs)are generally insoluble,and developing hydrophilic CPs is significant to broaden the applications of CPs.In this work,a mussel-inspired strategy was proposed to construct hydrophilic CP nanoparticles(CP NPs),while endowing the CP NPs with redox activity and biocompatibility.This is a universal strategy applicable for a series of CPs,including polyaniline,polypyrrole,and poly(3,4-ethylenedioxythiophene).The catechol/quinone contained sulfonated lignin(LS)was doped into various CPs to form CP/LS NPs with hydrophilicity,conductivity,and redox activity.These CP/LS NPs were used as versatile nanofillers to prepare the conductive hydrogels with long-term adhesiveness.The CP/LS NPs-incorporated hydrogels have a good conductivity because of the uniform distribution of the hydrophilic NPs in the hydrogel network,forming a well-connected electric path.The hydrogel exhibits long-term adhesiveness,which is attributed to the mussel-inspired dynamic redox balance of catechol/quinone groups on the CP/LS NPs.This conductive and adhesive hydrogel shows good electroactivity and biocompatibility and therefore has broad applications in electrostimulation of tissue regeneration and implantable bioelectronics.
文摘Objective To investigate the effect of multiple coatings of the one-step self-etching adhesive on immediate microtensile bond strength to primary dentin.Methods Twelve caries-free human primary molars were randomly divided into 2 groups with 6 teeth each.In group 1,each tooth was hemisected into two halves.One half was assigned to control subgroup 1,which was bonded with a single-step self-etching adhesive according to the manufacturer's instructions;the other half was assigned to experimental subgroup 1 in which the adhesive was applied three times before light curing.In group 2,the teeth were also hemisected into two halves.One half was assigned to control subgroup 2,which was bonded with the single-step self-etching adhesive according to the manufacturer's instructions;the other half was assigned to experimental subgroup 2 in which three layers of adhesive were applied with light curing each successive layer.Microtensile bond strength was immediately tested after specimen preparation.Results When the adhesive was applied three times before light curing,the bond strength of the experimental subgroup 1(n=33,57.49±11.61 MPa) was higher than that of the control subgroup 1(n=31,49.71±11.43 MPa,P<0.05).When using the technique of applying multiple layers of adhesive with light curing each successive layer,no difference of immediate bond strength was observed between the control subgroup 2 and the experimental subgroup 2(P>0.05).Conclusion Multiple coatings of one-step self-etching adhesive can increase the immediate bond strength to primary dentin when using the technique of light-curing after applying three layers of adhesive.
文摘The effect of introducing attenuation on Lamb wave dispersion curves is studied in this paper. Attenuation is introduced to a three-layered composite plate by an adhesive bond layer with viscous behavior. No changes are required to the transfer matrix formulation for the propagation of elastic waves. By introduction of a complex wavenumber, the model can be used to the propagation of attenuative Lamb waves. Numerical examples for a three-layered aluminium-epoxy-aluminium plate show that attenuation values of each mode in plates are related not only to attenuation, but also to the thickness of the bonded layer, which is in agreement with practical situations.
基金supported by the National Natural Science Foundation of China (52103184, 82102593)the China Postdoctoral Science Foundation (XJ2021051, 2020TQ0129, 2021M693960)+3 种基金the"Young Talent Support Plan"and Funding for Basic Scientific Research of Xi’an Jiaotong Universitysupported by a Grant from Science Foundation Ireland (SFI)co-funded under the European Regional Development Fund (13/RC/2073_P2)the funds received from European Union Horizon 2020 Programme (H2020-MSCA-IF-2017) under the Marie Sklodowska-Curie Individual Fellowship (797716).
文摘Osteoarthritis(OA)is the most common type of degenerative joint disease which affects 7%of the global population and more than 500 million people worldwide.One research frontier is the development of hydrogels for OA treatment,which operate either as functional scaffolds of tissue engineering or as delivery vehicles of functional additives.Both approaches address the big challenge:establishing stable integration of such delivery systems or implants.Adhesive hydrogels provide possible solutions to this challenge.However,few studies have described the current advances in using adhesive hydrogel for OA treatment.This review summarizes the commonly used hydrogels with their adhesion mechanisms and components.Additionally,recognizing that OA is a complex disease involving different biological mechanisms,the bioactive therapeutic strategies are also presented.By presenting the adhesive hydrogels in an interdisciplinary way,including both the fields of chemistry and biology,this review will attempt to provide a comprehensive insight for designing novel bioadhesive systems for OA therapy.
基金the financial supports of the Natural Science Foundation of China(No.21303139)the Open Project of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province(No.CSPC2013-1)+1 种基金the Key Fund Project of Educational Department of Sichuan Province(No.14ZA0126)the Doctoral Initiating Fund of China West Normal University(No.10B010)
文摘Selective hydrogenation of chloronitrobenzene(CNB) to chloroaniline(CAN) catalyzed by water-soluble Ru/Pt bimetallic catalyst in an aqueous-organic biphasic system was studied. It was found that the catalytic activity increased obviously due to the addition of platinum. Ru/Pt bimetallic catalysts exhibited a strong synergistic effect when the molar ratio of Pt was in the range of 5%—80%. Under the mild conditions including a temperature of 25 ℃, a hydrogen pressure of 1.0 MPa and a Pt molar ratio of 20%, the conversion of p-chloronitrobenzene(p-CNB) reached 99.9%, with the selectivity to p-chloroaniline(p-CAN) equating to 99.4%. The Ru/Pt catalyst also showed high activity and selectivity for the hydrogenation of other chloro- and dichloro-nitrobenzenes with different substituted positions. In addition, the catalyst can be recycled five times without significant loss of activity.
基金supported by the European Union's Horizon 2020 Research and Innovation Program (No. 636494)
文摘Numerous non-destructive techniques are being investigated for assuring quality of the adhesive bonds.The research presented here is focused on non-destructive assessment of carbon fibre reinforced polymer(CFRP)parts.The surface condition directly influences the performance of adhesive bonds.The structural joints should ensure safe usage of a structure.However,some modifications of the surface may lead to weak bond that cannot carry the desired load.This is why there is a search for methods of surface assessment before bonding.Moreover,reliable techniques are required to allow to verify the integrity of the adhesive bond after manufacturing or bonded repair.We focus on the laser induced fluorescence(LIF)method for assessing the surface state.The LIF is a noncontact measurement method.In the context of adhesive bond assessment the electromechanical impedance(EMI)method is studied.The EMI uses surface bonded piezoelectric sensors for excitation and sensing.The investigated samples were made of CFRP layers.The samples were treated at elevated temperatures.The influence of the thermal treatment was studied using LIF.The thermal treatment at 220℃could be clearly distinguishedrom the rest of the considered samples.The thermally treated plates were bonded to untreated plate and then they were measured with the EMI method to study the influence of the treatment on the adhesive bond.The changes of EMI spectra were significant for the treatment at 280 ℃ and for some thermally treated samples that were later contaminated with de-icing fluid.
基金supported by the National Natural Science Foundation of China(No.11832012).
文摘Accumulation of ice on airfoils and engines seriously endangers the safety of the fight.The accurate measurement of adhesion strength at the ice-substrate interface plays a vital role in the design of anti/de-icing systems.In this pursuit,the present study envisages the evaluation of the stress at the icesubstrate interface to guide the design of experimental set-ups and improve the measurement accuracy of shear strength using the finite element analysis(FEA)method.By considering such factors as the peeling stress,maximum von-mises stress and uniformity of stress,the height and radius of ice and the loading height are investigated.Based on the simulation results,appropriate parameters are selected for the experimental validation.Simulation results show that the peeling stress is decreased by reducing the loading height and increasing the height of ice.Higher ice,increasing loading height and smaller ice radius are found to be beneficial for the uniformity of stress.To avoid cracks or ice-breaking,it is imperative that the ice should be of a small radius and greater height.Parameters including the ice height of 25 mm,radius of 20 mm,and loading height of 9 mm are adopted in the experiment.The results of FEA and the experimental validation can significantly enhance the measurement accuracy of shear strength.
基金This work was supported by the Ministry of Science and Technology of the People’s Republic of China(Grant No.2018YFE0107800)the“13th Five-year”Science and Technology Projects from Education Department in Jilin Province of P.R.China(Grant No.JJKH20190108KJ)Industrial Technology Research and Development Projects from Development and Reform Commission of Jilin Province(Grant No.2019C050-8).
文摘The incidence rate of colon cancer ranks the third among malignant tumors worldwide.Gloeostereum incarnatum(GI),a fungus with homology of medicine and food,has multiple pharmacological activities.It was investigated in this study that the anti-colon cancer effect of polysaccharides purifi ed from GI(GIPS)in ApcMinC/Gpt mice(an in situ colon cancer mouse model).Eight-week administration with GIPS at doses of 30 or 90 mg/kg strongly inhibited tumor growth including the reduction on numbers and the suppression of the size without infl uencing the animals’body weight and organ functions.According to the proteomics performing by antibody array,among 308 detected cytokines,GIPS significantly regulated 89 of them.Compared with vehicle-treated mice,GIPS effectively reduced the levels of interleukin(IL)-1β,IL-4,IL-6,IL-17,IL-22,tumor necrosis factor(TNF)-α,matrix metalloproteinase(MMP)-2,and enhanced the levels of IL-15 and IL-18 in serum and/or colon tissues,which suggested its anti-inflammation of GIPS.GIPS suppressed nuclear aggregation of β-catenin,affected the expression of WNT1 and related proteins,thereby regulated the activation of the Wnt signaling.Altogether,GIPS can inhibit the growth of colon cancer,at least partially,via inhibiting the Wnt/β-catenin signaling pathway.
基金the Brazilian National Council for Scientific and Technological Development for financial support,FAPERGS,CNPq,and CAPES
文摘The objective of this study was to evaluate the effect of functionalizing a dental adhesive resin with YbF_3/SiO_2 fillers for use as radiopacifiers.Particles of YbF_3/SiO_2 were obtained with the high-energy mechanical milling method and characterized by both physical and chemical methods.After characterization,the particles were sieved and silanized prior to being incorporated into an adhesive resin.The stability of the particle suspension was then evaluated.After light activation,the radiopacity,degree of conversion,flexural strength and elastic modulus were determined.The dental adhesive resins with 10 and 15 wt% of filler provided satisfactory radiopacity,while flexural strength and elastic modulus were not affected.The degree of conversion was statistically lower than that of the control(p<0.05).The method used for incorporating the tested ytterbium fluoride/silicon dioxide particles at concentrations of 10 and 15 wt% was shown to be feasible for the development of a radiopaque dental adhesive system.
基金funded by General Motors Global Research and Development Center(Grant No.:PS21025708)
文摘The effect of hot-humid exposure(i.e., 40 C and 98% R.H.) on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.