期刊文献+
共找到274篇文章
< 1 2 14 >
每页显示 20 50 100
特征融合与BP神经网络结合的刀具磨损预测 被引量:1
1
作者 郭宏 徐延 +1 位作者 伊亚聪 胡孔耀 《机械设计与制造》 北大核心 2025年第1期108-111,116,共5页
通过监测刀具磨损情况,能够有效应对生产加工中的意外状况。为了精确监测刀具的磨损状态,提出了一种多传感器特征融合及BP神经网络结合的刀具磨损预测方法。首先对工业加工中采集到的切削力、振动、声发射信号进行小波阈值去噪,然后在... 通过监测刀具磨损情况,能够有效应对生产加工中的意外状况。为了精确监测刀具的磨损状态,提出了一种多传感器特征融合及BP神经网络结合的刀具磨损预测方法。首先对工业加工中采集到的切削力、振动、声发射信号进行小波阈值去噪,然后在时域、频域和时频域内分析并提取特征,再将融合后的各类传感器特征使用Pearson相关系数和主成分分析(PCA)实现数据降维,最后将降维后的融合特征输入搭建好的BP神经网络,通过非线性仿真分析,从而实现刀具磨损量的预测。案例验证表明:与单一传感器预测相比,提出的多传感器特征融合的刀具磨损预测方法误差最小,且决定系数R2达到0.993。 展开更多
关键词 传感器 特征提取 小波去噪 PCA BP神经网络 磨损预测
在线阅读 下载PDF
基于小波降噪的神经网络盾构泥水分离系统参数预测方法
2
作者 周翠红 周富强 +1 位作者 刘兆赫 翟志国 《土木与环境工程学报(中英文)》 北大核心 2025年第1期11-17,共7页
泥水盾构穿越复合地层时,掘进控制参数和泥水分离系统参数往往出现大幅波动,影响施工安全和掘进效率。为提升施工过程的安全稳定性,实现异常工况预测,依托望京隧道盾构工程,针对地层状况采用筛分、双旋流、离心/压滤固液分离协同控制技... 泥水盾构穿越复合地层时,掘进控制参数和泥水分离系统参数往往出现大幅波动,影响施工安全和掘进效率。为提升施工过程的安全稳定性,实现异常工况预测,依托望京隧道盾构工程,针对地层状况采用筛分、双旋流、离心/压滤固液分离协同控制技术,采集盾构机掘进参数(掘进速度、刀盘转速和总推进力等)和泥水分离系统运行参数(进浆量、进浆密度和进浆黏度等),通过Cook距离离群检测和小波阈值去噪处理提升数据质量;以双旋流分离密度比值、黏度比值等12个参数为输入,排浆量、排浆密度和排浆黏度为输出,建立BP神经网络泥水分离系统参数的预测模型,并选取3个不同地层环段进行预测对比分析。预测结果表明:预测平均绝对误差均在5%以内,该预测模型在复合地层下仍具有较高的准确性。 展开更多
关键词 盾构隧道 泥水分离 COOK距离 小波去噪 BP神经网络 参数预测
在线阅读 下载PDF
降水空间信息的处理策略对径流预测的影响
3
作者 高玉芳 何川 +1 位作者 彭涛 高勇 《水科学进展》 北大核心 2025年第1期143-154,共12页
降水空间信息的精确提取对径流预测的精度至关重要。本文以赣江流域为研究对象,基于长短期记忆网络(Long Short-Term Memory,LSTM)模型,设计原始图像、小波分解、统计特征、面平均值、区域划分5种降水空间信息提取方案,研究降水空间信... 降水空间信息的精确提取对径流预测的精度至关重要。本文以赣江流域为研究对象,基于长短期记忆网络(Long Short-Term Memory,LSTM)模型,设计原始图像、小波分解、统计特征、面平均值、区域划分5种降水空间信息提取方案,研究降水空间信息不同处理策略对基于LSTM模型的径流预测性能的影响。结果表明:相较于直接使用原始图像的方案,综合运用小波分解和统计特征提取的处理方法测试期纳什效率系数分别提升了11.5%和17.9%,同时也增强了模型的稳定性和解释性;不同的区域划分方法能结合土地利用、土壤类型等下垫面因素,反映降水响应的空间差异性,展现了对各流量等级的适应能力,相较于以流域平均值作为输入的方式,能明显提高捕捉高流量和低流量特征的能力。研究表明在基于LSTM模型的降雨—径流预测模型中引入降水空间信息,可以有效改善预测效果。 展开更多
关键词 径流预测 长短期记忆网络 卷积神经网络 小波变换
在线阅读 下载PDF
基于WOA-WNN-LSTM算法的红外CO痕量气体压力补偿与时序浓度分析
4
作者 田富超 张海龙 +3 位作者 苏嘉豪 梁运涛 王琳 王泽文 《光谱学与光谱分析》 北大核心 2025年第4期994-1007,共14页
红外光谱分析是工业环境气体定量分析的重要手段,当前红外气体检测仪的测量精度受环境压力变化影响较大,导致检测数据在不同压力条件下偏离实际气体浓度。为提高红外气体传感器的精度,选择了鲸鱼优化算法(whale optimization algorithm,... 红外光谱分析是工业环境气体定量分析的重要手段,当前红外气体检测仪的测量精度受环境压力变化影响较大,导致检测数据在不同压力条件下偏离实际气体浓度。为提高红外气体传感器的精度,选择了鲸鱼优化算法(whale optimization algorithm,WOA)和小波神经网络(wavelet neural network,WNN)相结合的压力补偿算法,并结合长短期记忆法(long short-term memory,LSTM)对补偿后的数据进行预测。通过搭建工业环境气体压力补偿实验平台,使用高精度配气仪配置100~900 ppm标准CO气体,在80~120 kPa范围内进行数百组重复实验,发现CO气体传感器在负压条件下测量值小于标气浓度,正压条件下测量值大于标气浓度,并随压力变化呈线性关系,绝对误差最高为86 ppm。将传感器数据使用小波神经网络进行误差降低,初步补偿后的CO误差降至26 ppm,但由于参数可移植性较差,个别数据误差较大。进一步使用鲸鱼优化算法优化小波神经网络的参数后,补偿效果显著提升,传感器测量值与真值之差保持在0.004%以内且数据稳定。最终结合LSTM进行气体浓度预测,预测值与实际值之间的均方根误差(RMSE)均小于0.1,平均绝对误差(MAE)均小于0.020,实验结果表明,WOA-WNN-LSTM算法能够有效提高红外气体传感器的测量精度,成功消除环境压力对测量结果的影响,为工业环境气体检测提供了更为可靠和精准的解决方案。 展开更多
关键词 红外光谱分析 环境压力补偿 鲸鱼优化算法 小波神经网络 时序浓度预测
在线阅读 下载PDF
调心轴承退化特性WPES提取及FOA-GRNN算法预测分析
5
作者 张海霞 李灿 《机械设计与制造》 北大核心 2025年第6期159-162,共4页
目前轴承剩余寿命预测需要采用大量历史经验作为判断依据,导致最终的预测结果相对实际测试情况形成了较大的偏差。这里以小波包能量谱WPES的方法对轴承退化特征进行了提取分析,并利用FOA-GRNN模型使GRNN获得更高精度的预测结果,根据多... 目前轴承剩余寿命预测需要采用大量历史经验作为判断依据,导致最终的预测结果相对实际测试情况形成了较大的偏差。这里以小波包能量谱WPES的方法对轴承退化特征进行了提取分析,并利用FOA-GRNN模型使GRNN获得更高精度的预测结果,根据多种群自适应果蝇优化算法进行数据分析获得GRNN扩展速度,实现了轴承剩余寿命的准确预测。研究结果表明:FOA-GRNN方法预测获得的均方误差为0.0034,形成了0.0532的绝对误差,均方根误差为0.06025,轴承退化特征能够满足轴承剩余寿命精确预测的要求。FOA-GRNN指标参数最小,达到了理想的效果,表现出了最优的收敛性,寻优效率与精度同时获得大幅提升。该研究对提高调心轴承故障诊断和寿命预测具有一定的理论支撑作用,可以拓宽到其它的机械传动故障信号分析领域。 展开更多
关键词 调心轴承 使用寿命 预测精度 小波包能量谱 广义回归神经网络 果蝇优化算法 退化特性 实验分析
在线阅读 下载PDF
粒子群优化小波神经网络的功率预测研究
6
作者 柴赟 刘志仁 +2 位作者 曹卫青 杨勤胜 陈公海 《南京师大学报(自然科学版)》 北大核心 2025年第3期129-138,共10页
电力系统的复杂化及可再生能源的集成增加,对电力系统运行中的功率预测技术提出了更高的要求.准确的功率预测对于电力系统的稳定运行、优化发电计划以及减少运营成本非常关键.为应对这一挑战,本文设计了一种将改进后的小波神经网络(WNN... 电力系统的复杂化及可再生能源的集成增加,对电力系统运行中的功率预测技术提出了更高的要求.准确的功率预测对于电力系统的稳定运行、优化发电计划以及减少运营成本非常关键.为应对这一挑战,本文设计了一种将改进后的小波神经网络(WNN)与粒子群优化(PSO)算法相结合的混合模型,有效提升了功率预测的精度与效率.小波神经网络的优势在于其能够处理非线性和非平稳时间序列数据,而粒子群优化则通过其全局搜索能力优化网络参数,从而避免局部最优问题,加速训练过程,改进的Gaussian小波函数增强了模型的多尺度能力.实验结果表明,相比于小波神经网络预测模型,改进后的PSO-WNN模型在预测精度和收敛速度方面均有显著的提升. 展开更多
关键词 粒子群优化 小波神经网络 功率预测
在线阅读 下载PDF
基于EMD-小波阈值-LSTM模型的混凝土坝变形预测
7
作者 欧斌 张才溢 +4 位作者 陈德辉 王子轩 杨石勇 杨霖 傅蜀燕 《排灌机械工程学报》 北大核心 2025年第4期379-386,共8页
变形是混凝土坝结构性态演化的综合表征,是大坝安全监控的核心指标,但其量级微小且包含噪声.为提高混凝土坝变形预测的精度,首先采用经验模态法(EMD)对大坝变形监测数据进行预处理,将复杂的信号分解成若干个由高到低的固有模态函数(IMF... 变形是混凝土坝结构性态演化的综合表征,是大坝安全监控的核心指标,但其量级微小且包含噪声.为提高混凝土坝变形预测的精度,首先采用经验模态法(EMD)对大坝变形监测数据进行预处理,将复杂的信号分解成若干个由高到低的固有模态函数(IMF)分量,从而挖掘数据的规律与特征.对高频IMF分量运用小波阈值进行分解降噪,以消除噪声干扰.最后,将降噪后的IMF分量进行组合重构,实现原始变形数据的降噪提质.在此基础上,将重构后数据再运用长短期记忆神经网络(LSTM)进行预测.实例验证表明,改进EMD-LSTM模型在预测能力和精度上均显著优于传统的EMD-LSTM和小波-LSTM模型,为大坝的安全监测和运维提供了新的有效工具,有助于精准掌握大坝的结构性态,确保其安全稳定运行. 展开更多
关键词 变形预测 混凝土坝 经验模态法 小波阈值 长短期记忆神经网络
在线阅读 下载PDF
基于多模态特征小波分解的深度学习股价概率预测
8
作者 张永宇 郭晨娟 魏涵玥 《计算机科学》 北大核心 2025年第S1期758-768,共11页
构建了一种创新的基于多模态特征小波分解的深度学习股价概率预测模型(MWDPF)。该模型融合了动态连续特征、动态分类特征、静态连续特征和静态分类特征等多源异构信息,通过并行融合的策略充分挖掘不同特征子空间的互补信息,全面刻画影... 构建了一种创新的基于多模态特征小波分解的深度学习股价概率预测模型(MWDPF)。该模型融合了动态连续特征、动态分类特征、静态连续特征和静态分类特征等多源异构信息,通过并行融合的策略充分挖掘不同特征子空间的互补信息,全面刻画影响股价波动的多重维度。该模型采用自回归递归神经网络架构,能够直接输出股价变化的概率分布预测,而非单一确定值预测,更加贴近实际股价呈概率分布的特征。另外,该模型引入小波分解技术,对原始时间序列进行去噪,自适应地过滤掉不同尺度下的噪声成分,提高了对内在波动规律的捕捉能力。实证分析阶段,采集了来自金融数据库和互联网论坛的多模态数据,通过缺失值填充、去极值、时间对齐等一系列预处理,以及精心的特征工程和模型优化,实现了优秀的预测性能,显著优于传统的统计学模型和深度学习模型,评价指标均有大幅改善。该模型产生的预测结果被用于构建了一个多因子选股策略,在实际回测中取得了可观的超额收益,进一步验证了该模型在实际投资决策中的有效性。该研究为股价预测提供了一种行之有效的解决方案,丰富了量化投资的理论和方法,具有重要的理论意义和应用价值。 展开更多
关键词 概率密度预测 多模态异构特征融合 小波分解时频分析 自回归递归神经网络 投资组合超额收益
在线阅读 下载PDF
基于HHO优化的时空水质预测模型 被引量:3
9
作者 李顺勇 张睿轩 谭红叶 《现代电子技术》 北大核心 2024年第2期176-182,共7页
我国水资源现状不容乐观,提高水质预测模型精度对水资源质量监测具有重要意义。为捕捉水质指标时序数据非线性变化趋势,水质指标多基于神经网络模型进行预测。但是现有模型忽略了河流流向,没有考虑上游监测点水质对下游水质的影响;同时... 我国水资源现状不容乐观,提高水质预测模型精度对水资源质量监测具有重要意义。为捕捉水质指标时序数据非线性变化趋势,水质指标多基于神经网络模型进行预测。但是现有模型忽略了河流流向,没有考虑上游监测点水质对下游水质的影响;同时现有模型多基于启发式优化算法中的粒子群算法调整神经网络的超参数,但该优化算法仍需设置较多超参数,而参数选取不当容易使模型陷入局部最优。为此,建立了时空水质预测模型(WT‐CNN‐LSTM‐HHO),利用哈里斯鹰优化算法(HHO),基于上游水质数据预测下游的氮、磷和溶解氧水质指标。实验结果显示,本文所提出的模型对水质预测性能有明显提升,可以实现设置较少超参数而达到较高的水质预测精度。 展开更多
关键词 时空水质预测 哈里斯鹰优化算法 LSTM神经网络 时间序列 CNN‐LSTM 小波降噪
在线阅读 下载PDF
基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术 被引量:1
10
作者 朱纬 王敏林 董雪明 《电子测量技术》 北大核心 2024年第8期189-194,共6页
基于光纤陀螺的测角仪可以实现对各项角运动参数的一体化动态精密测量,但在实际应用中,光纤陀螺测角仪受到温度变化的影响,导致测量精度下降。针对这一问题,本文提出了一种基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术... 基于光纤陀螺的测角仪可以实现对各项角运动参数的一体化动态精密测量,但在实际应用中,光纤陀螺测角仪受到温度变化的影响,导致测量精度下降。针对这一问题,本文提出了一种基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术。为了提高温度误差建模的进度,提高传统神经网络的逼近能力,通过自适应前向线性预测滤波器对建模用测角仪温度漂移数据进行预处理,并采用自适应小波回声神经网络建立温度漂移模型,能够避免传统神经网络结构设计的盲目性和局部最优等问题,增强了网络学习能力和泛化能力,并利用自适应律代替神经网络梯度进行网络训练,提升神经网络的逼近精度和收敛速度。实验结果表明,该模型可以提高光纤陀螺测角仪的测量精度和环境适应性,为光纤陀螺测角仪的性能优化和实际应用提供了可靠的技术支撑。 展开更多
关键词 测角仪 温度误差建模 小波回声神经网络 粒子群优化 自适应前向线性预测滤波器
在线阅读 下载PDF
基于PIWT-IPSO-BP的污水厂出水COD含量的预测模型 被引量:2
11
作者 张净 窦慧芸 +1 位作者 蒋武 刘晓梅 《中国农村水利水电》 北大核心 2024年第9期15-20,28,共7页
在农业灌溉的领域中,化学需氧量(Chemical Oxygen Demand,COD)的测定是衡量水体中有机物污染程度的一个重要指标。当COD浓度超过60mg/L时,其对土壤质量和农作物的生长产生的负面影响成为不容忽视的问题。这一现象可能会严重影响农作物... 在农业灌溉的领域中,化学需氧量(Chemical Oxygen Demand,COD)的测定是衡量水体中有机物污染程度的一个重要指标。当COD浓度超过60mg/L时,其对土壤质量和农作物的生长产生的负面影响成为不容忽视的问题。这一现象可能会严重影响农作物的产量和质量,进而对农作物生产的可持续性构成挑战。因此,有必要精确预测污水处理厂出水COD浓度的变化趋势,从而促进其在农业灌溉中的有效应用。研究结合了改进的小波变换、改进的粒子群优化(Improved Particle Swarm Optimization,IPSO)算法和反向传播BP(Back Propagation,BP)神经网络作为预测模型。鉴于COD受到众多因素的影响,这些因素之间存在复杂的耦合关系,采用PCA进行特征提取。考虑到数据采集的过程中不可避免的噪声干扰,应用小波降噪对原始数据进行处理,以确保数据质量,提高模型准确性。在此基础上,基于BP神经网络算法构建污水处理厂出水COD的预测模型。为了解决BP神经网络参数选择可能遇到的盲目性问题,引入改进的粒子群算法对模型进行参数优化,以提高预测精度。实验结果表明,提出的PIWT-IPSO-BP模型预测效果良好,其平均绝对误差、均方根误差和决定系数分别为0.222、0.386和0.984。该模型在一定程度上改善了数据噪声、多因子制约等问题,为污水循环利用技术应用于农业灌溉方面提供了参考依据。 展开更多
关键词 化学需氧量 预测模型 小波变换 粒子群优化算法 BP神经网络
在线阅读 下载PDF
基于改进小波神经网络的实时系统任务流量预测方法 被引量:1
12
作者 李丹 陈勃琛 潘广泽 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第6期208-214,共7页
针对当前航空装备实时系统对非周期实时任务无法预知难以实现可靠调度的困难,开展对航空装备实时系统非周期任务流量预测方法的研究。以小波神经网络为基础结合航空装备实时系统的特性建立任务流量预测模型,并提出利用人工鱼群算法对小... 针对当前航空装备实时系统对非周期实时任务无法预知难以实现可靠调度的困难,开展对航空装备实时系统非周期任务流量预测方法的研究。以小波神经网络为基础结合航空装备实时系统的特性建立任务流量预测模型,并提出利用人工鱼群算法对小波预测模型关键参数进行优化,避免陷入局部最优解,最终构建一种人工鱼群算法改进的小波神经网络任务流量预测系统。利用提出的预测模型开展实时任务流量预测对比仿真实验,实验结果表明,建立的基于改进小波神经网络的实时系统任务流量预测系统对非周期实时任务具有较高的预测精度,预测效果优于原始小波神经网络模型及T-S模糊神经网络模型。 展开更多
关键词 小波神经网络 人工鱼群算法 实时系统 流量预测
在线阅读 下载PDF
基于小波变换与IAGA-BP神经网络的短期风电功率预测 被引量:4
13
作者 孙国良 伊力哈木·亚尔买买提 +3 位作者 张宽 吐松江·卡日 李振恩 邸强 《电测与仪表》 北大核心 2024年第5期126-134,145,共10页
为提高风功率预测精度,减轻输出风能波动性对风电并网不利影响,提出了基于WT-IAGA-BP神经网络的短期风电功率预测方法。利用风速分区、3σ准则及拉格朗日插值法清洗风电场历史数据;其次,依据小波重构误差,选择db4小波分别提取风速、风... 为提高风功率预测精度,减轻输出风能波动性对风电并网不利影响,提出了基于WT-IAGA-BP神经网络的短期风电功率预测方法。利用风速分区、3σ准则及拉格朗日插值法清洗风电场历史数据;其次,依据小波重构误差,选择db4小波分别提取风速、风向、历史风功率的不同频率特征信号,并引入改进自适应遗传算法(IAGA)对各序列BP神经网络的初始权值与阈值寻优,使用Sigmiod函数通过适应度值自适应改变交叉概率与变异概率;构建各序列的WT-IAGA-BP模型对短期风功率组合预测。通过仿真分析,并与ELM、IAGA-BP、WT-ELM及WT-LSSVM方法对比,验证该方法具有更高的预测精度和更好的预测性能。 展开更多
关键词 风电功率预测 数据清洗 小波变换 改进自适应遗传算法 神经网络
在线阅读 下载PDF
基于改进EMD-LSTM的混凝土坝变形预测模型 被引量:3
14
作者 欧斌 张才溢 +4 位作者 陈德辉 王子轩 杨石勇 杨霖 傅蜀燕 《水利水电科技进展》 CSCD 北大核心 2024年第6期93-99,共7页
针对混凝土坝变形监测数据的非线性和复杂性等特征,为提高混凝土坝变形预测的精度,提出了一种基于改进经验模态分解(EMD)法和长短期记忆(LSTM)神经网络的混凝土坝变形预测模型。该模型采用小波阈值方法对EMD法分解的高频分量进行优化处... 针对混凝土坝变形监测数据的非线性和复杂性等特征,为提高混凝土坝变形预测的精度,提出了一种基于改进经验模态分解(EMD)法和长短期记忆(LSTM)神经网络的混凝土坝变形预测模型。该模型采用小波阈值方法对EMD法分解的高频分量进行优化处理,在去除数据噪声的同时,尽可能保留原始数据的特征信息,并运用LSTM神经网络对处理后的数据进行时序预测。实例验证结果表明,该模型能够准确模拟坝体变形过程,具有较高的预测精度。 展开更多
关键词 大坝变形 经验模态分解法 长短期记忆神经网络 小波阈值 预测模型
在线阅读 下载PDF
基于遗传算法小波神经网络的光伏电站发电量预测方法 被引量:9
15
作者 周强 张晓忠 +4 位作者 陈久益 沈炜 白建波 黄悦婷 汤霜霜 《智慧电力》 北大核心 2024年第4期78-84,共7页
针对光伏电站发电量预测不准确及多种气象因素下预测结果出现波动的问题,提出一种基于遗传算法小波神经网络(GA-WNN)的光伏电站发电量预测方法。首先,以反向传播(BP)神经网络的结构为框架,选择小波基函数作为隐含层的传递函数,将网络连... 针对光伏电站发电量预测不准确及多种气象因素下预测结果出现波动的问题,提出一种基于遗传算法小波神经网络(GA-WNN)的光伏电站发电量预测方法。首先,以反向传播(BP)神经网络的结构为框架,选择小波基函数作为隐含层的传递函数,将网络连接权值、小波函数伸缩因子、小波函数平移因子视为遗传个体,并通过遗传算法(GA)进行个体寻优以得到网络最优初始参数;然后,利用优化后的网络进行仿真预测,并对仿真数据进行分析;最后,将预测结果与实际发电量进行对比,以评估预测模型的误差和可靠性。实例分析表明,GA-WNN预测模型具有更小的误差和更高的预测精度,适用于精确预测光伏电站的发电量。 展开更多
关键词 光伏电站 发电量预测 遗传算法 小波神经网络
在线阅读 下载PDF
基于CNN-GRU模型的中欧班列运到时限预测 被引量:1
16
作者 张永祥 谷丽婷 +3 位作者 郭经纬 闫旭 冯涛 钟庆伟 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期3989-4001,共13页
随着经济贸易的全球化发展,中欧班列已经成为重要的国际货运方式。由于中欧班列的运到时限受诸多因素影响,现有模型难以充分捕捉运输时间数据的复杂特征关系,因而无法准确预测列车运到时限,影响中欧班列的调度及沿线运力的安排。提出一... 随着经济贸易的全球化发展,中欧班列已经成为重要的国际货运方式。由于中欧班列的运到时限受诸多因素影响,现有模型难以充分捕捉运输时间数据的复杂特征关系,因而无法准确预测列车运到时限,影响中欧班列的调度及沿线运力的安排。提出一种基于卷积神经网络(CNN)和门控循环单元(GRU)的中欧班列运到时限预测方法,该方法能有效捕捉运到时间序列的空间及时间特征,从而提高预测精度。所提方法首先利用小波变换技术对中欧班列运到时限历史数据进行降噪处理,再经过最大−最小归一化、多粒度扫描窗及数据划分后,通过一维CNN模块提取输入时间序列的空间特征,GRU模块提取序列的时间特征,最后输出中欧班列运到时限的预测值。在实验部分进行了模型的参数调优、小波变换去噪效果分析及模型对比。结果显示,经小波变换去噪处理后,CNN-GRU模型的均方根误差(RMSE)和平均绝对误差(MAE)分别降低了34.18%和26.77%;模型的RMSE和MAE比单一模型中预测效果表现最好的随机森林(RF)分别降低了17.28%和21.67%,比组合模型CNN-LSTM分别降低了5.68%和15.70%。本文所构建的CNN-GRU模型对于小样本复杂数据的预测性能较高,且模型训练参数较少,轻量化程度较高,可解释性较强。基于该模型的中欧班列运到时限预测方法提高了运到时限预测的准确性,能够为缓解中欧班列路网运力不足等现状提供较为可靠的技术支持。 展开更多
关键词 铁路运输 中欧班列 列车运到时限预测 CNN-GRU 小波变换
在线阅读 下载PDF
基于整体退火遗传小波网络的计量终端可靠性预测 被引量:2
17
作者 徐宏伟 丛中笑 +3 位作者 阳晓路 周忠明 陈寅生 林海军 《电测与仪表》 北大核心 2024年第2期179-184,共6页
为了解决小波神经网络初值敏感性及收敛稳定性问题,以提高计量终端软件可靠性预测建模的效率及准确性。文章完善了整体退火遗传算法(WAGA),并验证了其具有极强的整体收敛和全局优化能力,利用其全局寻优能力,优化小波神经网络(WNN)的参数... 为了解决小波神经网络初值敏感性及收敛稳定性问题,以提高计量终端软件可靠性预测建模的效率及准确性。文章完善了整体退火遗传算法(WAGA),并验证了其具有极强的整体收敛和全局优化能力,利用其全局寻优能力,优化小波神经网络(WNN)的参数,提出基于整体退火遗传小波神经网络(WAGA-WNN)的建模方法;用该方法建立计量终端的软件可靠性预测模型。实验结果表明,该方法可以解决小波神经网络初值敏感性及收敛稳定性难题,建立的软件可靠性预测模型效率和准确度较高。 展开更多
关键词 整体退火遗传算法 小波神经网络 计量终端 软件可靠性 预测模型
在线阅读 下载PDF
基于长短时记忆神经网络的抽油机井故障智能预警 被引量:2
18
作者 褚浩元 张傲雪 +3 位作者 李情霞 黄晓东 李喧喧 赵岩龙 《科学技术与工程》 北大核心 2024年第9期3646-3653,共8页
准确预测抽油机井故障对油田生产具有重要意义。针对新疆油田某区块抽油机井故障情况,统计了500口油井的生产数据,明确了结垢、结蜡、杆管腐蚀、杆管疲劳、杆管偏磨5种引发抽油机井故障的主要因素;基于长短时记忆神经网络(long short-te... 准确预测抽油机井故障对油田生产具有重要意义。针对新疆油田某区块抽油机井故障情况,统计了500口油井的生产数据,明确了结垢、结蜡、杆管腐蚀、杆管疲劳、杆管偏磨5种引发抽油机井故障的主要因素;基于长短时记忆神经网络(long short-term memory networks,LSTM),构建了油井故障智能预警模型;筛选出影响油井故障的14种特征参数进行小波降噪处理,借助自适应矩估计算法对模型进行训练与测试。研究结果表明,模型预测准确率为96.81%,能够为油田提供较为准确的抽油机井故障预警信息。 展开更多
关键词 故障预测 LSTM 小波降噪 神经网络 抽油机井
在线阅读 下载PDF
基于LSTM-PNN神经网络的电潜泵故障诊断方法
19
作者 周逸飞 刘新福 +4 位作者 曹砚锋 于继飞 欧阳铁兵 刘春花 周伟 《机床与液压》 北大核心 2024年第19期209-215,共7页
针对电潜螺杆泵故障预测中发生故障难以及时发现、发现难以准确判别故障类型等问题,提出一种基于深度学习长短期记忆网络(LSTM)结合概率神经网络(PNN)的电潜螺杆泵故障预测方法。以LSTM网络为回归模型,使用时间序列法预测故障信号的未... 针对电潜螺杆泵故障预测中发生故障难以及时发现、发现难以准确判别故障类型等问题,提出一种基于深度学习长短期记忆网络(LSTM)结合概率神经网络(PNN)的电潜螺杆泵故障预测方法。以LSTM网络为回归模型,使用时间序列法预测故障信号的未来趋势,利用小波包分解螺杆泵的故障信号,提取其中的故障特征,再结合油压、产量等多个工作参数,构建电潜螺杆泵的故障特征向量,并凭借PNN网络判别预测信号故障类型。收集新疆油田120组故障数据作为数据集对预测模型进行训练,从中取出90组数据作为故障数据库对模型进行训练,取出30组数据作为测试组测试模型准确率,使用LSTM-PNN神经网络预测模型分别对两组数据进行电潜螺杆泵故障预测。结果表明:预测前提取故障信号特征可有效提高电潜螺杆泵的故障预测精度,较常规电潜螺杆泵故障预测方法,LSTM-PNN网络预测具有更高的准确率且准确率提升了3%~16%。 展开更多
关键词 电潜螺杆泵 小波包分解 故障诊断 长短期记忆神经网络 概率神经网络
在线阅读 下载PDF
基于DWT-CNN-LSTM逐日气温预测模型研究
20
作者 樊姝琪 刘慧铭 +2 位作者 庄润杰 王诗雨 温永仙 《热带气象学报》 CSCD 北大核心 2024年第6期1063-1073,共11页
气温的准确预测对人类生产生活、农业等方面至关重要。针对传统气温预测方法难以捕捉数据的动态变化、预测精度差等问题,提出了一种融合离散小波变换(Discrete Wavelet Transformation,DWT)、卷积神经网络(Convolutional Neural Network... 气温的准确预测对人类生产生活、农业等方面至关重要。针对传统气温预测方法难以捕捉数据的动态变化、预测精度差等问题,提出了一种融合离散小波变换(Discrete Wavelet Transformation,DWT)、卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合气温预测模型。首先,利用DWT对原始气温观测数据进行分解与重构;其次,使用CNN进行特征提取,使用LSTM对提取的特征信息进行处理,以实现气温预测。同时采用均方根误差、平均绝对值误差和决定系数作为评价指标;最后,使用气温观测数据验证所提模型的有效性,并分别与LSTM模型、CNN-LSTM模型和DWTLSTM模型进行对比分析。实验结果表明,与LSTM模型、CNN-LSTM模型和基于离散小波变换的LSTM模型相比,DWT-CNN-LSTM模型分别将RMSE降低了1.00924,1.00274,0.10023,MAE降低了0.91836,0.86265,0.14489,R^(2)提高了0.04703,0.04662,0.00400,验证了该模型在气温预测中的有效性。这一结果为气温预测领域提供了新的参考依据,并有望在未来得到更广泛的应用。 展开更多
关键词 气温预测 时间序列 离散小波变换 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部