In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transforma...In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm.展开更多
In this paper, we study an efficient asymptotically correction of a-posteriori er- ror estimator for the numerical approximation of Volterra integro-differential equations by piecewise polynomial collocation method. T...In this paper, we study an efficient asymptotically correction of a-posteriori er- ror estimator for the numerical approximation of Volterra integro-differential equations by piecewise polynomial collocation method. The deviation of the error for Volterra integro- differential equations by using the defect correction principle is defined. Also, it is shown that for m degree piecewise polynomial collocation method, our method provides O(hm+l) as the order of the deviation of the error. The theoretical behavior is tested on examples and it is shown that the numerical results confirm the theoretical part.展开更多
We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorou...We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.展开更多
In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point ...In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.展开更多
Let X be a complex Banach space and let B and C be two closed linear operators on X satisfying the condition D(B)?D(C),and let d∈L^(1)(R_(+))and 0≤β<α≤2.We characterize the well-posedness of the fractional int...Let X be a complex Banach space and let B and C be two closed linear operators on X satisfying the condition D(B)?D(C),and let d∈L^(1)(R_(+))and 0≤β<α≤2.We characterize the well-posedness of the fractional integro-differential equations D^(α)u(t)+CD^(β)u(t)=Bu(t)+∫_(-∞)td(t-s)Bu(s)ds+f(t),(0≤t≤2π)on periodic Lebesgue-Bochner spaces L^(p)(T;X)and periodic Besov spaces B_(p,q)^(s)(T;X).展开更多
In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed poi...In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
In this article, we develop a fully Discrete Galerkin(DG) method for solving ini- tial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(CJPs) with indexes corres...In this article, we develop a fully Discrete Galerkin(DG) method for solving ini- tial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(CJPs) with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. The fractional derivatives are used in the Caputo sense. The numerical solvability of algebraic system obtained from implementation of proposed method for a special case of FIDEs is investigated. We also provide a suitable convergence analysis to approximate solutions under a more general regularity assumption on the exact solution. Numerical results are presented to demonstrate the effectiveness of the proposed method.展开更多
This work deals with approximation solutions to a type of integro-differential equations in several complex variables. It concerns the Cauchy formula on higher dimensional domains. In our study, we make use of multipl...This work deals with approximation solutions to a type of integro-differential equations in several complex variables. It concerns the Cauchy formula on higher dimensional domains. In our study, we make use of multiple power series expansions and an iterative computation method to solve a kind of integro-differential equation. We introduce a symmetrized topology product area which is called a bicylinder. We expand functions and derivatives of them to power series. Moreover we obtain unknown functions by comparing coefficients of the series on both sides of equations. We express the approximation solutions by a regular product of matrixes.展开更多
In this paper, we study mixed finite elements for parabolic integro-differential equations, and introduce a kind of nonclassical mixed projection, its optimal L-2 and h(-s) estimates are obtained. We define semi-discr...In this paper, we study mixed finite elements for parabolic integro-differential equations, and introduce a kind of nonclassical mixed projection, its optimal L-2 and h(-s) estimates are obtained. We define semi-discrete and full-discrete mixed finite elements for the equations, and obtain the optimal L-2 error estimates.展开更多
We study Hlder continuous solutions for the second order integro-differential equations with infinite delay (P1): u′′(t)+cu′(t)+∫t-∞β(t-s)u′(s)ds+∫t-∞γ(t-s)u(s)ds = Au(t)-∫t-∞δ(t-s)A...We study Hlder continuous solutions for the second order integro-differential equations with infinite delay (P1): u′′(t)+cu′(t)+∫t-∞β(t-s)u′(s)ds+∫t-∞γ(t-s)u(s)ds = Au(t)-∫t-∞δ(t-s)Au(s)ds + f(t)on the line R, where 0 〈 α 〈 1, A is a closed operator in a complex Banach space X, c ∈ C is a constant, f ∈ Cα(R,X) and β,γ,δ∈L1(R+).Under suitable assumptions on the kernels β, γ and δ, we completely characterize the Cα- well-posedness of (P_1) by using operator-valued Cα-Fourier multipliers.展开更多
This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems ...This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems established to several biomathematical models, the paper improves some previous results and obtains some new results.展开更多
In this article, we study the Volterra integral equations with two kinds of delay that are proportional delay and nonproportional delay. We mainly use Chebyshev spectral collocation method to analyze them. First, we u...In this article, we study the Volterra integral equations with two kinds of delay that are proportional delay and nonproportional delay. We mainly use Chebyshev spectral collocation method to analyze them. First, we use variable transformation to transform the equation into an new equation which is defined in [-1,1]. Then, with the help of Gronwall inequality and some other lemmas, we provide a rigorous error analysis for the proposed method, which shows that the numerical error decay exponentially in L~∞ and L_(ω~c)~2-norm. In the end, we give numerical test to confirm the conclusion.展开更多
This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as ...This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as the collocation points. The Legendre collocation discretization is proposed for Volterra-Hammerstein integral equation. We provide an error analysis which justifies that the errors of approximate solution decay exponentially in L2 norm and L^∞ norm. We give two numerical examples in order to illustrate the validity of the proposed Legendre spectral collocation method.展开更多
This article proves the existence and uniqueness of solution to two-parameter stochastic Volterra equation with non-Lipschitz coefficients and driven by Brownian sheet, where the main tool is Bihari's inequality in t...This article proves the existence and uniqueness of solution to two-parameter stochastic Volterra equation with non-Lipschitz coefficients and driven by Brownian sheet, where the main tool is Bihari's inequality in the plane. Moreover, we also discuss the time regularity property of the solution by Kolmogorov's continuity criterion.展开更多
The Backlund transformation and the generalized Miura transformation for the Volterra lattice equation are constructed by using point symmetry method. As an application, the explicit solution to the lattice equation i...The Backlund transformation and the generalized Miura transformation for the Volterra lattice equation are constructed by using point symmetry method. As an application, the explicit solution to the lattice equation is obtained.展开更多
In this paper,we discuss Llocp-solutions of a kind of nonlinear impulsive Volterra integral equation and present an existence theorem of solutions in Banach space.
This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s...This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s),u(s))dB(s)+∫_(0)^(t)h(t,s)dξ(s).by Here d B(s)denotes the Brownian motion It?type differential,ξdenotes the singular control(singular in time t with respect to Lebesgue measure)and u denotes the regular control(absolutely continuous with respect to Lebesgue measure).Such systems may for example be used to model harvesting of populations with memory,where X(t)represents the population density at time t,and the singular control processξrepresents the harvesting effort rate.The total income from the harvesting is represented by J(u, ξ) = E[∫_(0)^(t) f_(0)(t,X(t), u(t))dt + ∫_(0)^(t)f_(1)(t,X(t))dξ(t) + g(X(T))] for the given functions f0,f1 and g,where T>0 is a constant denoting the terminal time of the harvesting.Note that it is important to allow the controls to be singular,because in some cases the optimal controls are of this type.Using Hida-Malliavin calculus,we prove sufficient conditions and necessary conditions of optimality of controls.As a consequence,we obtain a new type of backward stochastic Volterra integral equations with singular drift.Finally,to illustrate our results,we apply them to discuss optimal harvesting problems with possibly density dependent prices.展开更多
This paper considers the global existence and nonexistence of positive solutions for the following volterra integral equations wbers Matrix B is called a positive definite one, if all the principal minors have positi...This paper considers the global existence and nonexistence of positive solutions for the following volterra integral equations wbers Matrix B is called a positive definite one, if all the principal minors have positive detechants. By considering the existence of positivve solutions for algebra equations, it is proved that if I-A is a positive definite matrix,where I is an identity matrix, then (I) bas global positive solution 1 Otherwise, (I)has no continous nbndeereasing positive solution.展开更多
In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytical...In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.展开更多
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133,11671157)。
文摘In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm.
文摘In this paper, we study an efficient asymptotically correction of a-posteriori er- ror estimator for the numerical approximation of Volterra integro-differential equations by piecewise polynomial collocation method. The deviation of the error for Volterra integro- differential equations by using the defect correction principle is defined. Also, it is shown that for m degree piecewise polynomial collocation method, our method provides O(hm+l) as the order of the deviation of the error. The theoretical behavior is tested on examples and it is shown that the numerical results confirm the theoretical part.
基金supported by NSFC Project(11301446,11271145)China Postdoctoral Science Foundation Grant(2013M531789)+3 种基金Specialized Research Fund for the Doctoral Program of Higher Education(2011440711009)Program for Changjiang Scholars and Innovative Research Team in University(IRT1179)Project of Scientific Research Fund of Hunan Provincial Science and Technology Department(2013RS4057)the Research Foundation of Hunan Provincial Education Department(13B116)
文摘We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.
基金supported by the National Nature Science Foundation of China (10671167)
文摘In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.
基金the NSF of China(12171266,12171062)the NSF of Chongqing(CSTB2022NSCQ-JQX0004)。
文摘Let X be a complex Banach space and let B and C be two closed linear operators on X satisfying the condition D(B)?D(C),and let d∈L^(1)(R_(+))and 0≤β<α≤2.We characterize the well-posedness of the fractional integro-differential equations D^(α)u(t)+CD^(β)u(t)=Bu(t)+∫_(-∞)td(t-s)Bu(s)ds+f(t),(0≤t≤2π)on periodic Lebesgue-Bochner spaces L^(p)(T;X)and periodic Besov spaces B_(p,q)^(s)(T;X).
文摘In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
文摘In this article, we develop a fully Discrete Galerkin(DG) method for solving ini- tial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(CJPs) with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. The fractional derivatives are used in the Caputo sense. The numerical solvability of algebraic system obtained from implementation of proposed method for a special case of FIDEs is investigated. We also provide a suitable convergence analysis to approximate solutions under a more general regularity assumption on the exact solution. Numerical results are presented to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(11771357,11171277)the Fundamental Research Funds for the Central Universities of Xiamen University(2010121002)the Science Foundation of Fujian province of China(S0850029,2008J0206)
文摘This work deals with approximation solutions to a type of integro-differential equations in several complex variables. It concerns the Cauchy formula on higher dimensional domains. In our study, we make use of multiple power series expansions and an iterative computation method to solve a kind of integro-differential equation. We introduce a symmetrized topology product area which is called a bicylinder. We expand functions and derivatives of them to power series. Moreover we obtain unknown functions by comparing coefficients of the series on both sides of equations. We express the approximation solutions by a regular product of matrixes.
文摘In this paper, we study mixed finite elements for parabolic integro-differential equations, and introduce a kind of nonclassical mixed projection, its optimal L-2 and h(-s) estimates are obtained. We define semi-discrete and full-discrete mixed finite elements for the equations, and obtain the optimal L-2 error estimates.
基金supported by the NSF of Chinathe Specialized Research Fund for the Doctoral Program of Higher Education
文摘We study Hlder continuous solutions for the second order integro-differential equations with infinite delay (P1): u′′(t)+cu′(t)+∫t-∞β(t-s)u′(s)ds+∫t-∞γ(t-s)u(s)ds = Au(t)-∫t-∞δ(t-s)Au(s)ds + f(t)on the line R, where 0 〈 α 〈 1, A is a closed operator in a complex Banach space X, c ∈ C is a constant, f ∈ Cα(R,X) and β,γ,δ∈L1(R+).Under suitable assumptions on the kernels β, γ and δ, we completely characterize the Cα- well-posedness of (P_1) by using operator-valued Cα-Fourier multipliers.
基金The research supported by the National Natural Science Foundation of China.
文摘This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems established to several biomathematical models, the paper improves some previous results and obtains some new results.
基金supported by National Science Foundation of China(11671157,11626074)Hanshan Normal Uninversity projects(LF201404,Z16027)
文摘In this article, we study the Volterra integral equations with two kinds of delay that are proportional delay and nonproportional delay. We mainly use Chebyshev spectral collocation method to analyze them. First, we use variable transformation to transform the equation into an new equation which is defined in [-1,1]. Then, with the help of Gronwall inequality and some other lemmas, we provide a rigorous error analysis for the proposed method, which shows that the numerical error decay exponentially in L~∞ and L_(ω~c)~2-norm. In the end, we give numerical test to confirm the conclusion.
基金supported by National Natural Science Foundation of China(11401347,91430104,11671157,61401255,11426193)Shandong Province Natural Science Foundation(ZR2014AP003)
文摘This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as the collocation points. The Legendre collocation discretization is proposed for Volterra-Hammerstein integral equation. We provide an error analysis which justifies that the errors of approximate solution decay exponentially in L2 norm and L^∞ norm. We give two numerical examples in order to illustrate the validity of the proposed Legendre spectral collocation method.
基金supported by NSF (10971076 and 11061032) of ChinaScience and Technology Research Projects of Hubei Provincial Department of Education (Q20132505)
文摘This article proves the existence and uniqueness of solution to two-parameter stochastic Volterra equation with non-Lipschitz coefficients and driven by Brownian sheet, where the main tool is Bihari's inequality in the plane. Moreover, we also discuss the time regularity property of the solution by Kolmogorov's continuity criterion.
基金Supported by the Science Research Foundation of Zhanjiang Normal University(L0803)
文摘The Backlund transformation and the generalized Miura transformation for the Volterra lattice equation are constructed by using point symmetry method. As an application, the explicit solution to the lattice equation is obtained.
文摘In this paper,we discuss Llocp-solutions of a kind of nonlinear impulsive Volterra integral equation and present an existence theorem of solutions in Banach space.
基金the financial support provided by the Swedish Research Council grant(2020-04697)the Norwegian Research Council grant(250768/F20),respectively。
文摘This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s),u(s))dB(s)+∫_(0)^(t)h(t,s)dξ(s).by Here d B(s)denotes the Brownian motion It?type differential,ξdenotes the singular control(singular in time t with respect to Lebesgue measure)and u denotes the regular control(absolutely continuous with respect to Lebesgue measure).Such systems may for example be used to model harvesting of populations with memory,where X(t)represents the population density at time t,and the singular control processξrepresents the harvesting effort rate.The total income from the harvesting is represented by J(u, ξ) = E[∫_(0)^(t) f_(0)(t,X(t), u(t))dt + ∫_(0)^(t)f_(1)(t,X(t))dξ(t) + g(X(T))] for the given functions f0,f1 and g,where T>0 is a constant denoting the terminal time of the harvesting.Note that it is important to allow the controls to be singular,because in some cases the optimal controls are of this type.Using Hida-Malliavin calculus,we prove sufficient conditions and necessary conditions of optimality of controls.As a consequence,we obtain a new type of backward stochastic Volterra integral equations with singular drift.Finally,to illustrate our results,we apply them to discuss optimal harvesting problems with possibly density dependent prices.
文摘This paper considers the global existence and nonexistence of positive solutions for the following volterra integral equations wbers Matrix B is called a positive definite one, if all the principal minors have positive detechants. By considering the existence of positivve solutions for algebra equations, it is proved that if I-A is a positive definite matrix,where I is an identity matrix, then (I) bas global positive solution 1 Otherwise, (I)has no continous nbndeereasing positive solution.
基金supported by the National Natural Science Foundation of China (11901184, 11771343)the Natural Science Foundation of Hunan Province (2020JJ5025)。
文摘In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.