Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirm...Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation.展开更多
To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coa...To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coaxial optical path is presented. The target image is obtained using double cameras with coaxial optical path. Since there is imaging optical path difference between the cameras, the images are different. In comparison of the image differences, the target range could be reversed. The principle of the ranging method and the ranging model are described. The relationship among parameters in the ranging process is analyzed quantitatively. Meanwhile,the system composition and technical realization scheme are also presented. Also, the principle of the method is verified by the equivalent experiment. The experimental results show that the design scheme is correct and feasible with good robustness. Generally, the ranging error is less than 10% with good convergence. The optical path is designed in a re-entrant mode to reduce the volume and weight of the system. Through the coaxial design,the visual passive range of the targets with any posture can be obtained in real time. The system can be widely used in electro-optical countermeasure and concealed photoelectric detection.展开更多
The existing researches on surfactant micellar solutions mainly focus on the formulation optimization and core flooding test, and the types and mechanisms of cleanup additives suitable for low permeability reservoir r...The existing researches on surfactant micellar solutions mainly focus on the formulation optimization and core flooding test, and the types and mechanisms of cleanup additives suitable for low permeability reservoir remain unclear. The flowback efficiencies of different types of surfactant micellar solutions were evaluated by core experiments, a multi-level pore-throat system micromodel characterizing pore-throat structures of low permeability reservoir was made, and flooding and flowback experiments of brine and surfactant micellar solutions of different salinities were conducted with the micromodel to show the oil flowback process in micron pores under the effect of surfactant micellar solution visually and reveal the mechanisms of enhancing displacement and flowback efficiency of surfactant micellar solution. During the displacement and flowback of brine and low salinity surfactant micellar solution, many small droplets were produced, when the small droplets passed through pore-throats, huge percolation resistance was created due to Jamin’s effect, leading to the rise of displacement and flowback pressure differences and the drop of flowback efficiency. The surfactant micellar solutions with critical salinity and optimal salinity that were miscible with crude oil to form Winsor Ⅲ micro-emulsion didnot produce mass small droplets, so they could effectively reduce percolation resistance and enhance oil displacement and flowback efficiency.展开更多
基金supported by the National Key R&D Program of China(2021YFB3301100)Beijing University of Chemical Technology Interdisciplinary Program(XK2023-07).
文摘Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation.
基金Supported by the National Basic Research Program of China under Grant No 2014CB340102
文摘To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coaxial optical path is presented. The target image is obtained using double cameras with coaxial optical path. Since there is imaging optical path difference between the cameras, the images are different. In comparison of the image differences, the target range could be reversed. The principle of the ranging method and the ranging model are described. The relationship among parameters in the ranging process is analyzed quantitatively. Meanwhile,the system composition and technical realization scheme are also presented. Also, the principle of the method is verified by the equivalent experiment. The experimental results show that the design scheme is correct and feasible with good robustness. Generally, the ranging error is less than 10% with good convergence. The optical path is designed in a re-entrant mode to reduce the volume and weight of the system. Through the coaxial design,the visual passive range of the targets with any posture can be obtained in real time. The system can be widely used in electro-optical countermeasure and concealed photoelectric detection.
基金Supported by the China National Science and Technology Major Project (2017ZX05009-005-003)Research Fund of China University of Petroleum (Beijing)(2462019QNXZ04)。
文摘The existing researches on surfactant micellar solutions mainly focus on the formulation optimization and core flooding test, and the types and mechanisms of cleanup additives suitable for low permeability reservoir remain unclear. The flowback efficiencies of different types of surfactant micellar solutions were evaluated by core experiments, a multi-level pore-throat system micromodel characterizing pore-throat structures of low permeability reservoir was made, and flooding and flowback experiments of brine and surfactant micellar solutions of different salinities were conducted with the micromodel to show the oil flowback process in micron pores under the effect of surfactant micellar solution visually and reveal the mechanisms of enhancing displacement and flowback efficiency of surfactant micellar solution. During the displacement and flowback of brine and low salinity surfactant micellar solution, many small droplets were produced, when the small droplets passed through pore-throats, huge percolation resistance was created due to Jamin’s effect, leading to the rise of displacement and flowback pressure differences and the drop of flowback efficiency. The surfactant micellar solutions with critical salinity and optimal salinity that were miscible with crude oil to form Winsor Ⅲ micro-emulsion didnot produce mass small droplets, so they could effectively reduce percolation resistance and enhance oil displacement and flowback efficiency.