For the autonomous guided vehicle (AGV) used mainly in unfixed work fields, a machine vision method was proposed for the navigation system, in which a series of navigation-signs are placed along the travel route. The ...For the autonomous guided vehicle (AGV) used mainly in unfixed work fields, a machine vision method was proposed for the navigation system, in which a series of navigation-signs are placed along the travel route. The navigation system detects and recognizes these signs, and accordingly informs the travel control system. In order for the navigation to have balanced ability of 1) covering a large area and 2) recognizing details of the sign, the proposed vision method was designed to be a hybrid one, using both the stereo vision and the traditional 2D template matching. The former implemented a coarse recognition function for above 1), and the later implemented a fine recognition function for above 2). The results from the coarse recognition were used in the fine recognition for the gaze control to input suitable 2D image of the signs. Experiments on a prototype system show the feasibility of the proposed hybrid method in achieving the objective specifications for a typical AGV.展开更多
For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ...For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.展开更多
Global Navigation Satellite System(GNSS)-based passive radar(GBPR)has been widely used in remote sensing applications.However,for moving target detection(MTD),the quadratic phase error(QPE)introduced by the non-cooper...Global Navigation Satellite System(GNSS)-based passive radar(GBPR)has been widely used in remote sensing applications.However,for moving target detection(MTD),the quadratic phase error(QPE)introduced by the non-cooperative target motion is usually difficult to be compensated,as the low power level of the GBPR echo signal renders the estimation of the Doppler rate less effective.Consequently,the moving target in GBPR image is usually defocused,which aggravates the difficulty of target detection even further.In this paper,a spawning particle filter(SPF)is proposed for defocused MTD.Firstly,the measurement model and the likelihood ratio function(LRF)of the defocused point-like target image are deduced.Then,a spawning particle set is generated for subsequent target detection,with reference to traditional particles in particle filter(PF)as their parent.After that,based on the PF estimator,the SPF algorithm and its sequential Monte Carlo(SMC)implementation are proposed with a novel amplitude estimation method to decrease the target state dimension.Finally,the effectiveness of the proposed SPF is demonstrated by numerical simulations and pre-liminary experimental results,showing that the target range and Doppler can be estimated accurately.展开更多
针对现有跨垄式采茶机导航中心线提取效率低的问题,该研究提出一种基于机器视觉跟踪生长ROI茶垄间导航线提取算法。首先采用固定ROI(region of interest)方法,选取图像左下方区域为第一块ROI,在ROI内进行超绿指数灰度化,最大类方差法分...针对现有跨垄式采茶机导航中心线提取效率低的问题,该研究提出一种基于机器视觉跟踪生长ROI茶垄间导航线提取算法。首先采用固定ROI(region of interest)方法,选取图像左下方区域为第一块ROI,在ROI内进行超绿指数灰度化,最大类方差法分割茶垄道路与背景,通过形态学操作对图像进行增强与降噪,使用最大连通域检测操作提取ROI内的坐标信息与特征点,根据ROI提取的坐标信息动态生成ROI,直到整个图像中所有茶垄道路信息提取完成,最后采用最小二乘法获取跨垄式采茶机底盘在垄间行驶的导航线。该方法经过连续帧测试,处理一帧1920×1080像素图像的平均时间为18 ms,该研究算法与人工提取导航线的航向角平均误差为0.405°,标准差为0.463°,可在一定杂草、落叶干扰的情况下完成导航角提取。展开更多
变电站室内无人机巡检可有效降低人工巡检作业强度。由于飞行精度要求高,搭载能力有限,仅依靠无人机搭载摄像头与惯性测量单元(inertial measurement unit, IMU)数据融合确定位姿无法满足精度要求,为此,提出基于变电站室内已有固定摄像...变电站室内无人机巡检可有效降低人工巡检作业强度。由于飞行精度要求高,搭载能力有限,仅依靠无人机搭载摄像头与惯性测量单元(inertial measurement unit, IMU)数据融合确定位姿无法满足精度要求,为此,提出基于变电站室内已有固定摄像头的泛在物联的多视觉-惯导融合框架,针对室内光线情况对无人机摄像头图像进行强化,并与IMU数据结合得到初步的无人机位置数据。进一步通过在无人机上布设二维码(quick response code,QR码),应用改进后的PnP(perspective-n-point)算法优化无人机位姿数据。飞行结束后在无人机机巢对IMU的累计误差进行校验。实验证明:该方法布设与维护的工作量小,相较仅依靠搭载摄像头与IMU数据融合算法,飞行精度有较大提高,可满足变电站内无人机巡检作业的需要。展开更多
文摘For the autonomous guided vehicle (AGV) used mainly in unfixed work fields, a machine vision method was proposed for the navigation system, in which a series of navigation-signs are placed along the travel route. The navigation system detects and recognizes these signs, and accordingly informs the travel control system. In order for the navigation to have balanced ability of 1) covering a large area and 2) recognizing details of the sign, the proposed vision method was designed to be a hybrid one, using both the stereo vision and the traditional 2D template matching. The former implemented a coarse recognition function for above 1), and the later implemented a fine recognition function for above 2). The results from the coarse recognition were used in the fine recognition for the gaze control to input suitable 2D image of the signs. Experiments on a prototype system show the feasibility of the proposed hybrid method in achieving the objective specifications for a typical AGV.
文摘For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.
基金supported by the National Natural Science Foundation of China(62101014)the National Key Laboratory of Science and Technology on Space Microwave(6142411203307).
文摘Global Navigation Satellite System(GNSS)-based passive radar(GBPR)has been widely used in remote sensing applications.However,for moving target detection(MTD),the quadratic phase error(QPE)introduced by the non-cooperative target motion is usually difficult to be compensated,as the low power level of the GBPR echo signal renders the estimation of the Doppler rate less effective.Consequently,the moving target in GBPR image is usually defocused,which aggravates the difficulty of target detection even further.In this paper,a spawning particle filter(SPF)is proposed for defocused MTD.Firstly,the measurement model and the likelihood ratio function(LRF)of the defocused point-like target image are deduced.Then,a spawning particle set is generated for subsequent target detection,with reference to traditional particles in particle filter(PF)as their parent.After that,based on the PF estimator,the SPF algorithm and its sequential Monte Carlo(SMC)implementation are proposed with a novel amplitude estimation method to decrease the target state dimension.Finally,the effectiveness of the proposed SPF is demonstrated by numerical simulations and pre-liminary experimental results,showing that the target range and Doppler can be estimated accurately.
文摘针对现有跨垄式采茶机导航中心线提取效率低的问题,该研究提出一种基于机器视觉跟踪生长ROI茶垄间导航线提取算法。首先采用固定ROI(region of interest)方法,选取图像左下方区域为第一块ROI,在ROI内进行超绿指数灰度化,最大类方差法分割茶垄道路与背景,通过形态学操作对图像进行增强与降噪,使用最大连通域检测操作提取ROI内的坐标信息与特征点,根据ROI提取的坐标信息动态生成ROI,直到整个图像中所有茶垄道路信息提取完成,最后采用最小二乘法获取跨垄式采茶机底盘在垄间行驶的导航线。该方法经过连续帧测试,处理一帧1920×1080像素图像的平均时间为18 ms,该研究算法与人工提取导航线的航向角平均误差为0.405°,标准差为0.463°,可在一定杂草、落叶干扰的情况下完成导航角提取。