针对现有二维波达方向(direction of arrival,DOA)估计方法对阵列接收信息利用不充分导致估计性能下降的问题,提出了一种平行互质阵列下对虚拟阵列插值的二维DOA估计方法。该方法通过对平行互质阵列扩展后的虚拟阵列进行插值,利用内插...针对现有二维波达方向(direction of arrival,DOA)估计方法对阵列接收信息利用不充分导致估计性能下降的问题,提出了一种平行互质阵列下对虚拟阵列插值的二维DOA估计方法。该方法通过对平行互质阵列扩展后的虚拟阵列进行插值,利用内插虚拟阵列的协方差矩阵与虚拟测量值之间的关系,提出一个关于等效虚拟测量向量的最小化问题,通过凸优化工具箱重构插值后的虚拟阵列协方差矩阵,结合酉变换和总体最小二乘方法进行DOA估计。仿真结果和湖上试验表明,该方法充分利用了非匀虚拟阵列中的所有虚拟阵元,提高了自由度和估计精度,具有有效性。展开更多
In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subar...In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.展开更多
文摘针对现有二维波达方向(direction of arrival,DOA)估计方法对阵列接收信息利用不充分导致估计性能下降的问题,提出了一种平行互质阵列下对虚拟阵列插值的二维DOA估计方法。该方法通过对平行互质阵列扩展后的虚拟阵列进行插值,利用内插虚拟阵列的协方差矩阵与虚拟测量值之间的关系,提出一个关于等效虚拟测量向量的最小化问题,通过凸优化工具箱重构插值后的虚拟阵列协方差矩阵,结合酉变换和总体最小二乘方法进行DOA估计。仿真结果和湖上试验表明,该方法充分利用了非匀虚拟阵列中的所有虚拟阵元,提高了自由度和估计精度,具有有效性。
基金supported by the National Natural Science Foundation of China (NSFC) [grant number. 61871414]。
文摘In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.