期刊文献+
共找到59,880篇文章
< 1 2 250 >
每页显示 20 50 100
Field system-level calibration method for accelerometer considering nonlinear coefficients
1
作者 WU Haotian YU Ruihang +2 位作者 CAO Juliang MA Caixia YANG Bainan 《Journal of Systems Engineering and Electronics》 2025年第3期814-824,共11页
In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension ... In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension Kalman filter is constructed to reduce impact brought by turntable.Then,a biaxial rotation path is designed based on the accelerometer output model,including orthogonal 22 positions and tilt 12 positions,which enhances gravity excitation on nonlinear coefficients of accelerometer.Finally,sampling is carried out for calibration and further experiments.The results of static inertial navigation experiments lasting 4000 s show that compared with the traditional method,the proposed method reduces the position error by about 390 m. 展开更多
关键词 ACCELEROMETER nonlinear coefficient system-level calibration rotation path
在线阅读 下载PDF
Far-field calibration of automotive millimeter wave radar via near-field implementation
2
作者 SUN Jinghu LIU Jiahuan +3 位作者 WEI Wenqiang YU Xianxiang CUI Guolong ZHANG Xiuyin 《Journal of Systems Engineering and Electronics》 2025年第3期694-700,共7页
To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the ste... To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the steering vectors with amplitude and phase errors,assuming that mmWR works in the time-sharing mode.Then,approximate relationship between the near-field calibration steering vector and the far-field calibration steering vector is analyzed,which is used to accomplish the mapping between the two of them.Finally,simulation results verify that the proposed method can effectively improve the angle measurement accuracy of mmWR with existing amplitude and phase errors. 展开更多
关键词 automotive millimeter wave radar far-field steering vector calibration near-field steering vector calibration direction of arrival(DOA)estimation low cost
在线阅读 下载PDF
Mitigation strategies for blasting-induced cracks and vibrations in twin-arch tunnel structures
3
作者 Xianshun Zhou Jin Chen +4 位作者 Xuemin Zhang Kai Zhu Yanyong Zhang Jianbo Fei Muhammad Irslan Khalid 《Defence Technology(防务技术)》 2025年第7期242-259,共18页
Due to space constraints in mountainous areas,twin tunnels are sometimes constructed very close to each other or even overlap.This proximity challenges the structural stability of tunnels built with the drill-and-blas... Due to space constraints in mountainous areas,twin tunnels are sometimes constructed very close to each other or even overlap.This proximity challenges the structural stability of tunnels built with the drill-and-blast method,as the short propagation distance amplifies blasting vibrations.A case of blasting damage is reported in this paper,where concrete cracks crossed construction joints in the twin-arch lining.To identify the causes of these cracks and develop effective vibration mitigation measures,field monitoring and numerical analysis were conducted.Specifically,a restart method was used to simulate the second peak particle velocity(PPV)of MS3 delays occurring 50 ms after the MS1 delays.The study found that the dynamic tensile stress in the tunnel induced by the blast wave has a linear relationship with the of the product of the concrete wave impedance and the PPV.A blast vibration velocity exceeding 23.3 cm/s resulted in tensile stress in the lining surpassing the ultimate tensile strength of C30 concrete,leading to tensile cracking on the blast-facing arch of the constructed tunnel.To control excessive vi-bration velocity,a mitigation trench was implemented to reduce blast wave impact.The trench,approximately 15 m in length,50 cm in width,and 450 cm in height,effectively lowered vibration ve-locities,achieving an average reduction rate of 52%according to numerical analysis.A key innovation of this study is the on-site implementation and validation of the trench's effectiveness in mitigating vi-brations.A feasible trench construction configuration was proposed to overcome the limitations of a single trench in fully controlling vibrations.To further enhance protection,zoned blasting and an auxiliary rock pillar,80 cm in width,were incorporated to reinforce the mid-wall.This study introduces novel strategies for vibration protection in tunnel blasting,offering innovative solutions to address blasting-induced vibrations and effectively minimize their impact,thereby enhancing safety and struc-tural stability. 展开更多
关键词 Twin-arch tunnel Drill-and-blast Blasting vibration mitigation LS-DYNA Restart method
在线阅读 下载PDF
A general viscoelastic foundation model for vibration analysis of functionally graded sandwich plate with auxetic core
4
作者 Mofareh Hassan Ghazwani Ali Alnujaie Pham Van Vinh 《Defence Technology(防务技术)》 2025年第4期40-58,共19页
This study presents a significant advancement in the vibration analysis of functionally graded sandwich plates with auxetic cores by introducing a general viscoelastic foundation model that more accurately reflects th... This study presents a significant advancement in the vibration analysis of functionally graded sandwich plates with auxetic cores by introducing a general viscoelastic foundation model that more accurately reflects the complex interactions between the plate and the foundation.The novelty of this study is that the proposed viscoelastic foundation model incorporates elastic and damping effects in both the Winkler and Pasternak layers.To develop the theoretical framework for this analysis,the higher-order shear deformation theory is employed,while Hamilton's principle is used to derive the governing equations of motion.The closed-form solution is used to determine the damped vibration behaviors of the sandwich plates.The precision and robustness of the proposed mathematical model are validated through several comparison studies with existing numerical results.A detailed parametric study is conducted to investigate the influence of various parameters,including the elastic and damping coefficients of the foundation,the material gradation,and the properties of the auxetic core on the vibration behavior of the plates.The numerical results provide new insights into the vibration characteristics of sandwich plates with auxetic cores resting on viscoelastic foundation,highlighting the significant role of the two damping coefficients and auxetic cores in the visco-vibration behavior of the plates. 展开更多
关键词 Damped vibration Viscoelastic foundation Sandwich plates Auxetic core Honeycomb core Negative Poisson's ratio
在线阅读 下载PDF
Improved microstructure and mechanical properties of A517Q steel fabricated via laser directed energy deposition assisted by ultrasonic vibration combined with tempering treatment
5
作者 LI Jian-liang REN He +6 位作者 WANG Qi-chen CHEN Zu-bin JIANG Guo-rui SUN Wen-yao SU Ye-tong GUO Chun-huan JIANG Feng-chun 《Journal of Central South University》 2025年第3期760-775,共16页
In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition... In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition(LDED).The effects of ultrasonic vibration(UV)and tempering treatment on microstructure evolution,microhardness distribution and mechanical properties of deposition layer were studied in detail.The microstructure of UV assisted LDED sample after tempering is mainly composed of tempered sorbite(TS).Due to the improvement of microstructure inhomogeneity and grains refinement,UV assisted LDED sample with tempering treatment obtains excellent mechanical properties.The ultimate tensile strength(UTS),yield strength(YS)and elongation after breaking(EL)reach 765 MPa,657 MPa and 19.5%,the increase ratios of UTS and YS are 14.5%and 33.8%while maintaining plasticity compared to original LDED sample,respectively.It is obvious that ultrasonic vibration combined with tempering is a potential and effective method to obtain uniform microstructure and excellent mechanical properties in metal laser directed energy deposition field. 展开更多
关键词 laser directed energy deposition ultrasonic vibration TEMPERING microstructure mechanical property A517Q steel
在线阅读 下载PDF
High-thermal free vibration analysis of functionally graded microplates using a new finite element formulation based on TSDT and MSCT
6
作者 Huu Trong Dang Nhan Thinh Hoang +2 位作者 Quoc Hoa Pham Trung Thanh Tran Huy Gia Luong 《Defence Technology(防务技术)》 2025年第2期131-149,共19页
Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis r... Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles. 展开更多
关键词 Microplates Functionally graded material Finite element method Modified couple stress theory New TSDT High-thermal free vibration Pasternak foundation
在线阅读 下载PDF
Effects of horizontal splitter plates on the vortex-induced vibration and aerostatic characteristics of twin separated parallel decks for a rail-cum-road bridge
7
作者 HE Xu-hui YANG Jia-feng +2 位作者 LIU Lu-lu ZOU Yun-feng HE Jing 《Journal of Central South University》 2025年第3期1024-1043,共20页
Installing the splitter plates is a passive aerodynamic solution for eliminating vortex-induced vibration (VIV). However, the influences of splitter plates on the VIV and aerostatic performances are more complicated d... Installing the splitter plates is a passive aerodynamic solution for eliminating vortex-induced vibration (VIV). However, the influences of splitter plates on the VIV and aerostatic performances are more complicated due to aerodynamic interference between highway and railway decks. To study the effects of splitter plates, wind tunnel experiments for measuring VIV and aerostatic forces of twin decks under two opposite flow directions were conducted, while the surrounding flow and wind pressure of static twin decks with and without splitter plates are numerically simulated. The results showed that the incoming flow direction affects the VIV response and aerostatic coefficients. The highway deck has poor vertical and torsional VIV, and the VIV region and amplitude are different under different directions. While the railway deck only has vertical VIV when located upstream. The splitter plates can impede the process of vortex generation, shedding and impinging at the gap between twin deck, and significantly reducing the surface fluctuating pressure coefficient, thus effectively suppressing the VIV of twin decks. While, the splitter plates hurt the upstream deck regarding static wind stability and have little effect on the downstream deck. The splitter plates of appropriate width are recommended to improve VIV performances in twin parallel bridges. 展开更多
关键词 splitter plates vortex-induced vibration(VIV) aerostatic characteristic wind tunnel test twin parallel decks the rail-cum-road bridges computational fluid dynamics
在线阅读 下载PDF
Exact solution for thermal vibration of multi-directional functionally graded porous plates submerged in fluid medium 被引量:1
8
作者 Quoc-Hoa Pham Van Ke Tran Phu-Cuong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期77-99,共23页
An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ... An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums. 展开更多
关键词 Plate-fluid contact Galerkin Vlasov's method Multi-directional functionally graded plate Novel porosity Thermal vibration Refined higher-order shear deformation theory
在线阅读 下载PDF
Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials
9
作者 Rui Zhao Jian Zheng +4 位作者 Jin Guo Yunbo Shi Hengzhen Feng Jun Tang Jun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期217-224,共8页
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr... In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment. 展开更多
关键词 Star-shaped metamaterials BROADBAND vibration attenuation Low-frequency ultrasound vibration Transmission loss
在线阅读 下载PDF
Output Voltage Model and Mechanical-Magnetic Design of Magnetostrictive Vibration Energy Harvester with a Rotating Up-Frequency Structure1
10
作者 Huang Wenmei Xue Tianxiang +2 位作者 Feng Xiaobo Weng Ling Li Mingming 《电工技术学报》 EI CSCD 北大核心 2024年第24期7639-7650,共12页
A vibration energy harvester can harvest vibration energy in the environment and convert it into electrical energy to power the sensors in the Internet of Things.Human walking contains high-quality vibration energy,wh... A vibration energy harvester can harvest vibration energy in the environment and convert it into electrical energy to power the sensors in the Internet of Things.Human walking contains high-quality vibration energy,which serves as the energy source for vibration energy harvesters due to its abundant availability,high energy conversion efficiency,and environmental friendliness.It is difficult to harvest human walking vibration due to its low frequency.Converting the low-frequency vibration of human walking into high-frequency vibration has attracted attention.In previous studies,vibration energy harvesters typically increase frequency by raising excitation frequency or inducing free vibration.When walking frequency changes,the up-frequency method of raising the excitation frequency changes the voltage frequency,resulting in the best load resistance change and reducing the output power.The up-frequency method of inducing free vibration does not increase the external excitation frequency,which has relatively low output power.This paper designs a magnetostrictive vibration energy harvester with a rotating up-frequency structure.It consists of a rotating up-frequency structure,a magnetostrictive structure,coils,and bias magnets.The main body of the rotating up-frequency structure comprises a torsion bar and a flywheel with a dumbbell-shaped hole.The magnetostrictive structure includes four magnetostrictive metal sheets spliced by Galfenol and steel sheets.The torsion bar and flywheel interact to convert low-frequency linear vibration into rotating high-frequency excitation vibration of the flywheel.The flywheel plucks the magnetostrictive metal sheet with a high excitation frequency to generate free vibration.The vibration energy harvester increases the excitation frequency while inducing free vibration,which can effectively improve the output power.To characterize the excitation vibration and free vibration,based on the theory of Euler-Bernoulli beam theory,the vibration equation of the magnetostrictive metal sheet after being excited is given.According to the classical machine-magnetic coupling model and the Jiles-Atherton physical model,the relationship between stress and magnetization strength is derived.Combined with Faraday's law of electromagnetic induction,the distributed dynamic output voltage model is established.This model can predict the output voltage at different excitation frequencies.Based on this model,the mechanical-magnetic structural parameter optimization design is carried out.The parameters of the magnetostrictive metal sheet,the bias magnet,and the rotating up-frequency structure are determined.A comprehensive experimental system is established to test the device.The peak-to-peak voltage and output voltage signal by the proposed model are compared.The average relative deviation of the peak-to-peak voltage and the output voltage signal is 4.9%and 8.2%,respectively.The experimental results show that the output power is proportional to the excitation frequency.The optimum load resistance is always 800Ωas the excitation frequency changes,simplifying the impedance-matching process.The maximum peak-to-peak voltage of the device is 58.60 V,the maximum root mean square(RMS)voltage is 9.53 V,and the maximum RMS power is 56.20 mW.The magnetostrictive vibration energy harvester with a rotating up-frequency structure solves the problem of impedance matching,which improves the output power.The proposed distributed dynamic output voltage model can effectively predict the output characteristics.This study can provide structural and theoretical guidance for up-frequency structure vibration energy harvesters for human walking vibration. 展开更多
关键词 vibration energy harvester MAGNETOSTRICTIVE rotating up-frequency dynamic model free vibration
在线阅读 下载PDF
Theoretical and Experimental Research of High-Static-Low Dynamic Torsional Vibration Isolator for Ship Shafting
11
作者 LI Lin-tao LU Jia-zhong +2 位作者 YANG Zhi-rong XIAO Wang-qiang RAO Zhu-shi 《船舶力学》 EI CSCD 北大核心 2024年第12期1970-1982,共13页
High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate tor... High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting. 展开更多
关键词 ship shafting high-static-low-dynamic stiffness torsional vibration isolator
在线阅读 下载PDF
Kinematic calibration under the expectation maximization framework for exoskeletal inertial motion capture system
12
作者 QIN Weiwei GUO Wenxin +2 位作者 HU Chen LIU Gang SONG Tainian 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期769-779,共11页
This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters ... This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters are calibrated by the traditional calibration method at first. Then, in order to calibrate the parameters affected by the random colored noise, the expectation maximization (EM) algorithm is introduced. Through the use of geometric parameters calibrated by the traditional calibration method, the iterations under the EM framework are decreased and the efficiency of the proposed method on embedded system is improved. The performance of the proposed kinematic calibration method is compared to the traditional calibration method. Furthermore, the feasibility of the proposed method is verified on the EI-MoCap system. The simulation and experiment demonstrate that the motion capture precision is significantly improved by 16.79%and 7.16%respectively in comparison to the traditional calibration method. 展开更多
关键词 human motion capture kinematic calibration EXOSKELETON gyroscopic drift expectation maximization(EM)
在线阅读 下载PDF
Experimental investigation of vibration pretreatment-microwave curing process for carbon fiber reinforced resin matrix composites
13
作者 ZHANG De-chao ZHAN Li-hua +4 位作者 MA Bo-lin YAO Shun-ming GUO Jin-zhan GUAN Cheng-long LIU Shu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1838-1855,共18页
The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the i... The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃. 展开更多
关键词 vibration microwave curing POROSITY interlaminar shear strength thermo-gravimetric analysis curing strain
在线阅读 下载PDF
Random vibration analysis of FGM plates subjected to moving load using a refined stochastic finite element method
14
作者 Ngoc-Tu Do Trung Thanh Tran 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期42-56,共15页
The article introduces a finite element procedure using the bilinear quadrilateral element or four-node rectangular element(namely Q4 element) based on a refined first-order shear deformation theory(rFSDT) and Monte C... The article introduces a finite element procedure using the bilinear quadrilateral element or four-node rectangular element(namely Q4 element) based on a refined first-order shear deformation theory(rFSDT) and Monte Carlo simulation(MCS), so-called refined stochastic finite element method to investigate the random vibration of functionally graded material(FGM) plates subjected to the moving load.The advantage of the proposed method is to use r-FSDT to improve the accuracy of classical FSDT, satisfy the stress-free condition at the plate boundaries, and combine with MCS to analyze the vibration of the FGM plate when the parameter inputs are random quantities following a normal distribution. The obtained results show that the distribution characteristics of the vibration response of the FGM plate depend on the standard deviation of the input parameters and the velocity of the moving load.Furthermore, the numerical results in this study are expected to contribute to improving the understanding of FGM plates subjected to moving loads with uncertain input parameters. 展开更多
关键词 FGM Moving load R-FSDT Q4 element Monte Carlo simulation Random vibration
在线阅读 下载PDF
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion
15
作者 CHEN Shu-zong LIU Yun-xiao +3 位作者 WANG Yun-long QIAN Cheng HUA Chang-chun SUN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3329-3348,共20页
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode... Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration. 展开更多
关键词 rolling mill vibration multi-dimension data multi-modal data convolutional neural network time series prediction
在线阅读 下载PDF
Finite element approach for free vibration and transient response of bi-directional functionally graded sandwich porous skew-plates with variable thickness subjected to blast load
16
作者 Hong Nguyen Thi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第12期83-104,共22页
At the first time,the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous(BFGSP)skew plates.The who... At the first time,the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous(BFGSP)skew plates.The whole BFGSP skew-plates is placed on a variable visco-elastic foundation(VEF)in the hygro-thermal environment and subjected to the blast load.The BFGSP skew-plate thickness is permitted to vary non-linearly over both the length and width of the skew-plate,thereby faithfully representing the real behavior of the structure itself.The analysis is based on a four-node planar quadrilateral element with eight degrees of freedom per node,which is approximated using Lagrange Q_(4)shape function and C^(1)level non-conforming Hermite shape function based on refined higher-order shear deformation plate theory.The forced vibration parameters of the non-uniform thickness BFGSP skew-plate are fully determined using Hamilton's principle and the Newmark-βdirect integration technique.Accuracy of the calculation program is validated by comparing its numerical results with those from reputable sources.Furthermore,a thorough assessment is conducted to determine the impact of various parameters on the free and forced vibration responses of the non-uniform thickness BFGSP skew-plate.The findings of the paper may be used in the development of civil and military structures in situations that are prone to exceptional forces,such as explosions and impacts load. 展开更多
关键词 Finite element modeling Hygro-thermal environment Variable thickness Free and forced vibration Visco-elastic foundation Skew-plate
在线阅读 下载PDF
Application and optimization design of non-obstructive particle damping-phononic crystal vibration isolator in viaduct structure-borne noise reduction
17
作者 SHI Duo-jia ZHAO Cai-you +3 位作者 ZHANG Xin-hao ZHENG Jun-yuan WEI Na-chao WANG Ping 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2513-2531,共19页
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi... The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions. 展开更多
关键词 non-obstructive particle damping phononic crystal vibration isolator band gap optimization floating-slab track bridge structure-borne noise control particle swarm optimization
在线阅读 下载PDF
基于ADAMS/Vibration的微型摆式内燃机的振动分析 被引量:14
18
作者 武利霞 郭志平 +3 位作者 张仕民 吴书伟 张学文 李晓波 《噪声与振动控制》 CSCD 北大核心 2008年第1期7-9,共3页
振动对微型摆式内燃机的正常运转具有很大的危害。将微型摆式内燃机的振动简化为二自由度对称质量—弹簧系统,通过机械系统动力学分析软件ADAMS建立内燃机振动的虚拟样机模型,首先利用ADAMS/Vibration求解系统各阶固有频率和模态主振型... 振动对微型摆式内燃机的正常运转具有很大的危害。将微型摆式内燃机的振动简化为二自由度对称质量—弹簧系统,通过机械系统动力学分析软件ADAMS建立内燃机振动的虚拟样机模型,首先利用ADAMS/Vibration求解系统各阶固有频率和模态主振型,并利用MATLAB软件计算出各工作阶段的压力随时间的变化,赋予模型激励力,利用ADAMS/Vibration对其进行强迫振动仿真分析,并绘制频率响应曲线,以验证其响应是否在所要求的范围之内。 展开更多
关键词 振动与波 微型摆式内燃机(MFSPE) ADAMS/vibration
在线阅读 下载PDF
基于ADAMS/Vibration的轧辊磨床测量装置振动特性仿真 被引量:6
19
作者 刘静 李郝林 黄德杰 《机械设计》 CSCD 北大核心 2010年第12期29-33,共5页
研究测量装置的振动特性和抗振性能对提高磨床测量和磨削精度有重要的意义。针对实际振动测试难度较大以及理论分析不确定因素太大等问题,提出了一种将理论与振动仿真测试相结合的方法。利用ADAMS/Vibration软件建立测量装置的振动分析... 研究测量装置的振动特性和抗振性能对提高磨床测量和磨削精度有重要的意义。针对实际振动测试难度较大以及理论分析不确定因素太大等问题,提出了一种将理论与振动仿真测试相结合的方法。利用ADAMS/Vibration软件建立测量装置的振动分析虚拟样机模型,求解系统各阶固有频率和模态主振型以及频率响应,进行自由振动和受迫振动分析,为测量装置的设计与优化提供基础。 展开更多
关键词 轧辊磨床 测量装置 ADAMS/vibration 振动仿真
在线阅读 下载PDF
Seismic features of vibration induced by train 被引量:16
20
作者 陈棋福 李丽 +5 位作者 李纲 陈凌 彭文涛 汤毅 陈颙 王夫运 《地震学报》 CSCD 北大核心 2004年第6期651-659,共9页
Based on schematically formulation of the vibrations induced by moving trains, this paper analyses the waveforms along the Datong-Qinhuangdao railroad in Northern China recorded in the suburban Huairou district of Bei... Based on schematically formulation of the vibrations induced by moving trains, this paper analyses the waveforms along the Datong-Qinhuangdao railroad in Northern China recorded in the suburban Huairou district of Beijing on March 8, 2003. It is illustrated that vibrations induced by train, except traditional recognized noises and interfer- ence effects, could be used as a seismic source to detect crustal structures with its advantage of abundant frequency spectrum, repeatability and no additional harm to the environment. It will bring lights to the traditional exploration seismology with the further studies of signal processing and interpretation methods, and related models and new observing systems. 展开更多
关键词 列车振动 多点运动源 记录特征
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部